
Avrupa Bilim ve Teknoloji Dergisi 

Sayı 23, S. 456-464, Nisan 2021 

© Telif hakkı EJOSAT’a aittir 

Araştırma Makalesi 
 

 

 

 
www.ejosat.com ISSN:2148-2683 

 

European Journal of Science and Technology 

No. 23, pp. 456-464, April 2021 

Copyright © 2021 EJOSAT 

Research Article 

 

 

http://dergipark.gov.tr/ejosat   456 

Forecasting The Biosorption of Crystal Violet Cationic Dye onto 

Biomass-driven Graphene-Like Porous Carbon Through Artificial 

Neural Network Approach 

Ceren Karaman1* 

1* Akdeniz University, Vocational School of  Technical Sciences, Departmant of Electricity and Energy, Antalya, Turkey, (ORCID: 0000-0001-9148-7253), 

cerenkaraman@akdeniz.edut.tr  

 

(First received 11 February 2021 and in final form 4 April 2021) 

(DOI: 10.31590/ejosat.878772) 

 

ATIF/REFERENCE: Karaman, C. (2021). Forecasting The Biosorption of Crystal Violet Cationic Dye onto Biomass-driven 

Graphene-Like Porous Carbon Through Artificial Neural Network Approach. European Journal of Science and Technology, (23), 456-

464. 

 

Abstract 

Textile industries are considered to be the main actors in water pollution. Estimation of the textile dye sorption capacities of the 

biosorbents/adsorbents are crucial as design considerations. Herein, the feasibility of utilizing orange-peel-derived graphene-like 

porous carbons (GCs) as a low-cost biosorbent for removal of Crystal Violet (CV) cationic dye from aqueous solution have been 

evaluated both by batch biosorption experimental-setup and by using an artificial neural network (ANN) approach. The 

physicochemical characterization results have indicated that as-synthesized GCs has a specific surface area of 985 m2.g-1, a pore 

volume of 1.04 cm3.g-1, and a point of zero charge (pHPZC) of 6.50. The biosorption capacity of the biosorbent has been investigated as 

a function of initial pH, bisorbent dosage, initial dye concentration, and temperature. The optimal biosorption performance values 

have been achieved at pH of 7.5, the biosorbent dosage of 3.0 g.L-1, the temperature of 25 ℃, in which 91.6% of initial CV (initial 

dye concentration of 100 ppm) has been successfully removed. The experimental results have indicated that the biosorption process 

significantly depends on the temperature whereas ca.15 min of contact time is sufficient for reaching equilibrium. The ANN approach 

has been utilized to forecast the biosorption performance of GCsThe proposed ANN model has been trained by the Levengberg-

Marquardt backpropagation algorithm, by using the activation function of purelin and tansig functions at hidden and output layers, 

respectively. Different hidden topologies have been evaluated to optimize the ANN model. An optimal ANN model structured with 

two hidden layers with 5 and 10 neurons in each layer has been developed to forecast the biosorption of CV with high-performance 

parameters (linear correlation coefficient, R= 0.9995; mean squared error, MSE=0.0004). This work has shown that the experimental 

data are in harmony with ANN-based data, so it can be speculated that the proposed ANN approach can be utilized for predicting the 

cationic dye biosorption 
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Yapay Sinir Ağı Yaklaşımı ile Crystal Violet Katyonik 

Boyarmaddesinin Biyokütle-temelli Grafen Benzeri Gözenekli 

Karbon Üzerine Biyosorpsiyonunun Tahmin Edilmesi 

Öz 

Tekstil endüstrisi su kirliliğinde ana aktörler olarak kabul edilmektedir. Biyosorbentlerin / adsorbanların tekstil boyası soğurma 

kapasitelerinin tahmini, tasarım konuları olarak çok önemlidir. Bu çalışmada, sulu çözeltiden Crystal Violet (CV) katyonik 

boyarmaddesinin uzaklaştırılması için düşük maliyetli bir biyosorbent olarak portakal kabuğu türevi grafen benzeri gözenekli 
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karbonun (GCs) kullanılmasının fizibilitesi hem kesikli biyosorpsiyon deney düzeneği ile hem de yapay bir sinir ağı (YSA) yaklaşımı 

kullanılarak değerlendirilmiştir. Fizikokimyasal karakterizasyon sonuçları, sentezlenen GCs'nin 985 m2.g-1 özgül yüzey alanına, 1.04 

cm3.g-1 gözenek hacmine ve 6.50 sıfır yük noktasına (pHPZC) sahip olduğunu ortaya çıkarmıştır. Biyosorbentin biyosorpsiyon 

kapasitesi, başlangıç pH’ı, bisorbent dozu, başlangıç boya konsantrasyonu ve sıcaklığın fonksiyonu olarak araştırılmıştır. En yüksek 

biyosorpsiyon performans değerleri pH 7.5, biyosorbent konsantrasyonu 1.0 g.L-1, 25 ° C sıcaklıkta elde edilmiştir ve burada 

başlangıçtaki CV'nin% 91.6 'si başarıyla uzaklaştırılmıştır. Deneysel sonuçlar, biyosorpsiyon işleminin önemli ölçüde sıcaklığa bağlı 

olduğunu, ancak yaklaşık 15 dakikalık temas süresinin dengeye ulaşmak için yeterli olduğunu göstermiştir. GC’nin biyosorpsiyon 

performansını tahmin etmek için YSA yaklaşımı kullanılmıştır. Önerilen YSA modeli, sırasıyla gizli katmanda ve çıktı katmanlarında 

purelin ve tansig fonksiyonlarının aktivasyon fonksiyonu kullanılarak, Levengberg-Marquardt geri yayılım algoritması ile eğitilmiştir. 

YSA modelini optimize etmek için farklı gizli topolojiler değerlendirilmiştir. Yüksek performanslı parametrelerle (doğrusal 

korelasyon katsayısı, R = 0.9995; ortalama kare hatası, MSE = 0.0004) CV'nin biyosorpsiyonunu tahmin etmek için 5 ve 10 nöronlu 

iki gizli katman ile yapılandırılmış optimal bir YSA modeli geliştirilmiştir. Bu çalışma, deneysel verilerin YSA temelli verilerle 

uyumlu olduğunu ortaya koymuştur, bu nedenle önerilen YSA yaklaşımının katyonik boyarmadde biyosorpsiyonunu tahmin etmek 

için kullanılabileceği söylenebilir.  

 

 

Anahtar Kelimeler: Tarımsal Atık, Yapay Sinir Ağı (YSA), Biyosorpsiyon, Crystal Violet, Modelleme, Portakal Kabuğu. 

 

1. Introduction 

The exponential increase in industrialization especially in 

textile, leather, paper, printing, food, cosmetic, petroleum 

industries has led to severe contamination of groundwater due to 

their synthetic dye pollutants. Almost 15% of dyes are wasted 

during the process and ca.20% of them have been directly 

discharged to wastewater. Hence, they threaten both many of the 

life forms and the environment. There are almost theree 

hundered types of dyes readily available. Amongst them, 

synthetic dyes are the main threat due to their non-

biodegradable, highly stable and toxic nature (Karaman and 

Aksu, 2020). Crystal violet, one of the well-known cationic 

synthetic dye, is utilized in various applications such as 

cosmetics, veterinary medicine, textile dyeing, printing, 

dermatology, an additive to poultry feed. Even a trace amount of 

it may cause cytotoxic and carcinogenic effects on cells and 

severe damage to the cornea and conjunctiva, besides the 

adverse effects on the aquatic life. Therefore, so far number of 

researches have been conducted for the removal of organic 

pollutants to protect both human beings and the environment. In 

addition to conventional technologies for water treatment, the 

researchers have intensely focused on alternative techniques 

such as membrane process, electrosorption, photocatalytic 

oxidation, and of course adsorption which is one of the most 

promising candidates (Kodal and Aksu, 2017). Adsorption is 

considered to be one of the most feasible ones since it offers 

high removal efficiency, low-cost and operation simplicity, 

suitable for scaling-up (Karaman and Aksu, 2020; Karaman 

2020). Among the variety of biomaterials that can be used as 

biosorbents, agricultural wastes have gained substantial 

prominence due to their low-cost, availability, non-toxicity, 

environmental benignity, and the possibility to obtain various 

derivatives. Among the various types of agricultural waste 

biosorbents, orange peel is considered to be a satisfactory 

biosorbent since its surface functionality and lignocellulosic 

structure, as well as its readily available (Karaman 2020; Liang 

et al., 2009; Lu et al., 2009; Pathak et al., 2016).  

In the adsorption/biosorption process there are many 

interactions between the adsorbent/biosorbent and the adsorbates 

that mainly influenced by operational conditions. Especially in 

large-scale applications, it is vital to utilize a smart model to 

forecast the removal efficiency of biosorbents without 

conducting redundant efforts. In this sense, the ANN approach 

that is one of the powerful candidates to model both linear and 

non-linear systems can be successfully applied to modeling the 

adsorption process, and also optimize the process (Dehghani et 

al., 2020; Pauletto et al., 2020). It is noteworthy that the 

performance of the ANN model depends on its structure such as 

selected backpropagation algorithm, activation function in 

hidden/output layers, and the number of neurons and hidden 

layers (Pauletto et al., 2020; Elemen et al., 2012, Fawzy et al., 

2018; Ghaedi et al., 2014). Thus, it is important to optimize the 

proposed ANN model (Pauletto et al., 2020). There are several 

valuable works that get benefits from ANN to predict the 

adsorption behavior of the various systems.  Broujeni et al. 

(2021) synthesized chitosan/TiO2 nanocomposite and 

investigated its application as an adsorbent for removing thorium 

(IV) (Th4+) ion from aqueous solution. All experiments were 

carried out by ANN, and genetic algortihm was implemented to 

determine the most suitable operating condition for the 

adsorption of Th4+. Hanandeh et al. (2021) simulated Pb, Cu and 

Ni adsorption in single and multicomponent solutions by 

constructed different machine learning algorithms specifically 

ANN models. They reported that the Bayesian regularization 

backpropogation algorithm offered the highest accuracy amongst 

the others. Additionally, it was stated that the best performance 

was achieved by using 8 neurons in the hidden layer with 

symmetrical logistic transfer functions (tansig) for both the 

hidden and output layers. Based on the above facts, it can be 

speculated that related studies on biosorbent can also be applied 

to other optimized ANN models. Herein, a cost-natural orange-

peel-derived graphene-like porous carbon has been utilized as 

biosorbent for removal of cationic dye from aqueous solutions. It 

is aimed to get further insight in the biosorption of crystal violet 

dye onto GCs both by conducting batch biosorption experiments 

and by applying the proposed ANN model to validate and 

forecast the removal efficiency. Even though there are plenty of 

reported works on the orange peel derived bisorbents for dye 

removal, this work is original as it highlights the biosorption of 

CV onto GCs by ANN approach. The maximum dye removal 

efficiency of the GCs and optimum process conditions have been 

determined by assesing the independent variables including 

initial pH of the solution, initial dye concentration (mg.L-1), 

biosorbent dosage (g.L-1),  and operation temperature (℃). These 

independent variables have been used as input data for the 

proposed ANN model, whereas the removal efficiency is the 

output data. The ANN model has been optimized by evaluating 

the different hidden layer topologies. The ANN model has been 

trained by the Levengberg-Marquardt backpropagation 

algorithm, by using the activation function of purelin and tansig 

functions at hidden and output layers, respectively. The ANN 
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performance has been evaluated by well-established 

performance metrics including mean squared error and linear 

determination coefficient to forecast the CV removal efficiency 

of the GCs by using the testing data.  

2. Methodology 

2.1. Synthesis of Biosorbent 

The waste orange peel-derived graphene-like porous carbon 

biosorbents were synthesized according to our previous report 

(Karaman, 2020). The schematic representation of the proposed 

two-step production pathway was given in Scheme 1. The 

washed, ball-milled, and dried waste orange peels (DOP) were 

used as a carbon precursor to synthesize GCs.  A two-step facile 

route consisting of thermal annealing and the chemical 

activation with potassium hydroxide (KOH) was applied for 

preparing GCs biosorbents. As-prepared powder was treated 

with 0.1 M hydrochloric acid (HCl) and deionoized water (DI) to 

remove inorganic salts. Afterward, the product was dried at 70 

°C in a vacuum oven, then labeled as GCs. 

 

Scheme 1. Schematic illustration of synthesis pathway for GCs 

2.2. Preparation of Crystal Violet Solution 

Crystal violet solutions with determined initial CV 

concentrations (listed in Table 1) was prepared by from 1000 

ppm stock solution of CV. Subsequently, the initial pH (range 

between 2.0-10.0) of dye solutions were set by using 0.1 N HCl 

and 0.1 N NaOH solution, followed by the biosorbent was added 

to the pH-adjusted dye solution. 

2.3. Physicochemical Characterization of 

Biosorbent 

The physicochemical characterization of GCs was 

conducted by field-emission scanning electron microscope (FE-

SEM) (Hitachi S-4900) operating at 5.0 kV, and transmission 

electron microscope (TEM, JEM-1400F, JEOL) at 120 kV. The 

Brunauer–Emmett–Teller surface areas (SBET) of biosorbent were 

obtained with the help of the N2 adsorption/desorption 

measurements (at 77 K) by using Quantachrome Nova 2200 

automated surface area analyzer (Quantachrome Corporation, 

USA). The pore size distributions (PSD) were calculated by the 

Barrett-Joyner-Halenda (BJH) method. 

2.4. Experimental Studies of Batch Biosorption 

Series of typical batch biosorption experiments were 

conducted as reported in the previous report (Karaman, 2020) to 

investigate the effect of independent variables (Table 1) on CV 

removal efficiency. During the experimental studies, t0 was 

defined as the time when a weighed amount of GCs was first 

introduced to 100 mL of pH-adjusted test solution.  

Subsequently, at pre-determined contact time intervals up to 120 

min, periodically 5.0 mL of dye samples were taken out, 

followed by centrifugation at 5000 rpm for 5 min. The residual 

CV concentration was determined by a UV/Vis 

spectrophotometer (U–2800, Hitachi, Japan) at the maximum 

adsorption peak (𝜆opt). 

Table 1. Range of biosorbtion operating condition variables 

Independent variables Range 

Initial pH of the dye solution 
2.0, 3.5, 4.0, 5.5, 6.0, 7.5, 8.5, 

10.0 

Initial CV concentration  

(ppm) 

25.0, 50.0, 100.0, 250.0, 500.0, 

750.0 

Dosage of GCs (g.L-1) 1.0, 1.5, 2.0, 3.0, 4.0 5.0 

Operation temperature (°C) 25, 35, 45 

2.4.1. Evalutaion of Biosorption Performance  

The biosorption capacity q (mg. g−1) (Eq. 1), removal 

efficiency % (Eq. 2), and biosorption rate r (mg.g-1.min-1) (Eq.3) 

metrics of the GCs were calculated.  

𝑞 =
(𝐶0−𝐶)

𝑋
  (1) 

removal efficiency % =  
(𝐶0−𝐶)

𝐶0
× 100 (2) 

r =
∆𝑞

∆𝑡
  (3) 

where Co (mg.L-1) is the initial arsenate concentration; C 

(mg.L-1) is the residual arsenate concentration at any time of the 

biosorption process; X is the biosorbent dosage (g.L−1); t is the 

time (min).  

The experiments were performed in triplicate to guarantee 

the accuracy and the reproducibility of the data, and the average 

of them was used in data processing conducted by Microsoft 

Excel 2010.  The relative standard deviations were calculated to 

be within ±3 %. 

2.4. Artificial Neural Network Modeling  

The neural network toolbox of MatLab® 9.5 (R2018b) 

software was utilized to train and simulate the ANN network for 

forecasting the CV removal efficiency of as-synthesized GCs. 

The proposed feedforward ANN model consisting of 

interconnected input, hidden and output layers was trained by 

the Levenberg-Marquardt (trainlm) backpropagation algorithm, 

using the activation function of purelin (Eq. 4) and tansig (Eq.5) 

at the hidden and the output layers, respectively.  

𝑦 = 𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑥) = 𝑥  (4) 

𝑦 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝑥) =
2

(1+exp(−2𝑥))−1
  (5) 

The experimental data were randomly divided into training 

data (70%), validation data (15%), and test data (15%). The data 

were previously normalized to the range of -1 to 1 by MatLab® 

function mapminmax to avoid the overfitting problem and 

maintain the generalization. The initial pH of the solution, initial 

dye concentration, biosorbent dosage, and the operating 
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temperature were the input neurons of the proposed model, 

whereas the removal efficiency was the neuron of the output 

layer. The number of artificial neurons in hidden layers is mainly 

responsible for feature extraction from the input to predict the 

output. Thus, the performance of the developed ANN model 

depends on the number of hidden layers and the number of 

artificial neurons in these layers. Therefore, different hidden 

layer topologies based on degrees of freedom analysis of the 

system were evaluated to optimize the ANN model. 

The performance of the proposed model and the optimal 

hidden topology were chosen based on the performance metrics 

of MSE (Eq. 6) and R (Eq. 7) values.  

𝑀𝑆𝐸 =
1

𝑁
∑ (|𝑦𝑝𝑟𝑑,𝑖 − 𝑦𝑒𝑥𝑝,𝑖|)

2𝑁
𝑖=1  (6) 

𝑅 = 1 −
∑ (𝑦𝑝𝑟𝑑,𝑖−𝑦𝑒𝑥𝑝,𝑖)𝑁

𝑖=1

∑ (𝑦𝑝𝑟𝑑,𝑖−𝑦𝑀)𝑁
𝑖=1

 (7) 

where 𝑦𝑝𝑟𝑑,𝑖 is the predicted value by ANN model, 𝑦𝑒𝑥𝑝,𝑖 is 

the experimental value, 𝑦𝑀 is the average of experimental value, 

and N is the number of data.  

3. Results and Discussion  

3.1. Physicochemical Characterization of 

Biosorbent 

SEM and TEM analysis were conducted to investigate the 

morphology and the structure of as-synthesized samples (Figure 

1). The SEM migrograph of DOP (Figure 1a) suggested 

irregular-shaped bulk carbon monoliths. On the otherhand, the 

SEM images of GCs sample presented silky porous network 

with micro and mesoporous structure (Figure 1b). As presented 

in Figure 1c, TEM image of GCs sample offered slightly 

wrinkled surface characteristics of graphene structures besides 

atomic-thick layered carbon material.  

 

Figure 1. FE-SEM images of (a) DOP and (b) GCs, (c)TEM 

image of GCs 

The BET surface areas (Figure 2a) and the PSDs (Figure 2b) of 

as-sythesized samples were calculated and tabulated in Table 2. 

The increment in the SBET value of GCs mainly attributed to the 

activation of the mesopores and micropores of samples by KOH 

activation and thermal annealing. The observed Type-IV 

hysteresis loop in N2 adsorption/desorption isotherm of GCs 

suggested dominant mesoporous structures which also was 

confirmed by the PSD analysis. As listed in Table 2, thanks to 

the higher SBET and hierarchically-ordered micro and 

mesoporous structure with large pore volume of GCs, the dye 

adsorption capacity of GCs was expected to be higher than DOP.   

 

Figure 2. (a) N2 adsorption/desorption isotherms (b) the BJH 

pore size distributions of DOP and GCs 

Table 2. Physicochemical parameters obtained from N2 

adsorption/desorption isotherms of DOP and GCs samples 

Sample ID 
SBET  

m2.g-1 

Vmicro 

cm3. g-1 

Vmeso 

cm3.g-1 

Vtotal  

cm3.g-1 

Vmicro 

% 

Vmeso 

% 

DOP 102.0 0.10 0.05 0.14 67.38 32.62 

GCs 985.0 0.41 0.63 1.04 39.85 60.15 

3.2. Effect of Experimental Parameters on CV 

Removal 

3.2.1. Initial pH  

The effect of solution initial pH on the biosorption of CV, a 

serial of batch biosorption studies were carried out over a pH 

range of 2.0-10.0 at 100 ppm initial CV concentration, and 1.0 

g.L-1 GCs dosage. The results indicated that the pH of the 

solution directly affect the biosorption capacities of the 

biosorbent (Figure 3). The dye removal efficiency of increased 

at the alkaline media up to pH 7.5. It has been observed that 

there was no remarkable change in removal efficiency. 

Therefore, further experiments were conducted at pH 7.5. 

However, it should be noted that the slight decrease in the 

removal efficiency at alkaline media was mainly caused by the 

competition of hydroxyl ions and the crystal violet oxyanions 
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(Abid et al., 2016; Rahaman et al., 2008). It is noteworthy to 

emphasize that the neutral pH values give the way for practical 

application for textile wastewater treatment. The results were 

consistenwith the zeta potential measurements. The point of zero 

charge (pHPZC) of GCs was measured as 6.50. At a higher pH 

value than pHPZC of the sample, the surface of the biosorbent 

charged negatively and led to favor the biosorption of cationic 

species. On the other hand, the lower pHPZC values, the surface 

protonated and prone to biosorp the anionic species (Das et al., 

2007; Su et al., 2010). In the light of these findings, it could be 

proposed the biosorption of CV onto GCs probably occurred as a 

result of electrostatic interaction.  

 

Figure 3. Effect of the initial pH of the dye solution on the 

removal efficiency of GCs (Co=100 ppm, X=1.0 g.L-1; t=120 

min, T= 25 ℃). 

3.2.2. GCs Dosage  

Another parameter that could affect the biosorption capacity is 

the biosorbent dosage. Thus, the effect of biosorbent dosage 

range between 1.0-5.0 g.L-1 on the CV removal from aqueous 

solution was examined at the optimum pH of 7.5 for 100 ppm 

dye concentration. The equilibrium uptake capacity (qe; mg.g-1) 

and the removal efficiency values of the biosorbent at various 

biosorbent dosage was calculated and presented in Figure 4. It 

was realized that the biosorbent concentration frankly shifted the 

removal efficiency from ca.85.6 % to ca.92.0% by increasing 

the mass fraction of the biosorbent. This increment was mainly 

caused by the increasing the number of active sites. On the other 

hand, due to the economical and practical reasons 3.0 g.L-1 

biosorbent dosage was determined as the optimum biosorbent 

dosage since it was realized that there was no remarkable 

difference in removal % of 3.0 g.L-1 and 5.0 g.L-1 biosorbent 

concentration. Hence, the further experiments were conducted at 

pH 7.5, and 3.0 g.L-1 biosorbent dosage. 

 3.2.3. Initial Dye Concentration  

The dye removal efficiency and the adsorption rate was 

investigated for various initial CV concentration ranging 

between 25.0 ppm and 750 ppm at the optimum pH of 7.5 for 

120 min at 25 ℃ . The biosorption of CV onto GCs was 

increased remarkably by increasing the initial dye concentration 

since the concentration difference offers a significant driving 

force that could eliminate the mass transfer resistance (Figure 

5a.). Figure 5a indicated that the biosorption process 

significantly depends on the initial dye concentration and ca.15 

min of contact time is sufficient for reaching the biosorption 

equilibrium. Within the first 10 min of the biosorption process, it 

was determined that the major part of the dye species 

successfully transferred from the dye solution to the solid-liquid 

interface and adsorb onto the biosorbent active sites. 

Subsequently, by reaching the equilibrium the biosorption 

uptake capacity curve reached a plateu (Figure 5a). Moreover, as 

a result of increasing the number of interactions between the 

biosorbent and dye species at higher dye concentrations, the 

biosorption rate was substantially increased up to 4.5 mg.g-1.min-

1 at 750 ppm initial CV concentration (Figure 5b). On the other 

hand, it was realized that the removal efficiency of GCs was not 

boosted by the increase of initial dye concentration since the 

number of available vacant active sites on the surface of the 

biosorbent was diminished at the higher dye concentrations. 

 

 

Figure 4.  Effects of GCs dosage (g.L-1) on uptake of CV 

(initial pH=7.5, Co=100 ppm, t=120 min, T= 25 ℃) 

3.2.4. Temperature 

The operating temperature of the biosorption process is one of 

the critical parameters that affects the biosorption rate and the 

removal efficiency of the biosorbent. The biosorption rate, 

removal efficiency, and equilibrium dye uptake capacity of the 

GCs were evaluated at different operating temperatures of 25  

℃, 35  ℃, and 45  ℃ at optimum initial solution pH of 7.5, and 

3.0 g.L-1 biosorbent dosage. The temperature-dependent 

biosorption behavior of the GCs indicated its exothermic 

character since the removal efficiency and biosorption rate 

values were decreased with the increase of the operating 

temperature. The equilibrium uptake capacity (qeq) of the GCs 

decreased from 30.5 mg.g-1 to 23.9 mg.g-1 by increasing the 

temperature from 25 to 45 ℃, at pH 7.5 and 100 ppm initial CV 

concentration. This behavior was attributed to the weakened 

physical bounding at higher temperatures.
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Figure 5.  (a)Effect of contact time (b) initial CV concentration on uptake of CV (initial pH=7.5, X=3.0 g.L-1, T= 25 ℃) 

Table 3. Effect of operating temperature and initial dye concentration on bisorption rate (rad), equilibrium uptake capacity (qeq), and 

CV removal % (initial pH=7.5, X: 3.0 g.L−1). 

T C0  

(ppm) 

rad  

(mg.g-1.min-1) 

qeq  

(mg.g-1) 

Removal  

% 

25 

25 0.23 8.2 98.4 

50 0.50 15.0 90.0 

100 1.02 30.5 91.5 

250 2.05 61.5 73.8 

500 3.58 107.4 64.4 

750 4.50 135.0 54.0 

35 

25 0.23 7.0 81.3 

50 0.44 13.2 75.6 

100 0.87 26.1 77.0 

250 1.72 51.7 61.2 

500 2.96 88.9 53.2 

750 3.72 111.6 44.5 

45 

25 0.19 5.6 66.9 

50 0.35 10.5 61.9 

100 0.80 23.9 71.1 

250 1.62 48.6 58.3 

500 2.49 74.7 44.7 

750 3.20 95.9 38.3 

 

3.3. Optimal Artificial Neural Network  

An optimal ANN was developed with four independent 

input variables including initial pH of the solution, biosorbent 

dosage, initial dye concentration, and operating temperature by 

using MatLab® software. The database was consisted of 200 

experimental input and output pairs. Various hidden layer 

topologies were evaluated to optimize the ANN performance, 

and the performance metrics were listed in Table 4.  The best 

network performance parameters were obtained for two hidden 

layers with 5 and 10 neurons in each layer. It was observed that 

the performance of the network increased with the increasing of 

the number of hidden layers. The results revealed that the 

performance of the ANN model was deped on the number of 

hidden layers and the neurons. The minimum MSE and the 

maximum R values of testing data were calculated to be 0.0004 

and 0.9995 for hidden layer topology configuration #4. 

Therefore, as illustrated in Figure 6., the ANN architecture 4-5-

10-1, trained by the Levenberg-Marquardt backpropogation 

algorithm, was selected as the optimal network to forecast the 

CV removal efficiency of GCs. 
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Table 4. ANN performance for different hidden layer topologies. 

Topology ID 
Number  

of Neurons 

Training Testing 

MSE R MSE R 

#1 [5] 0.0029 0.9959 0.0032 0.9944 

2 [10] 0.0009 0.9996 0.0012 0.9992 

#3 [5 5] 0.0010 0.9992 0.0015 0.9987 

#4 [5 10] 0.0003 0.9997 0.0004 0.9995 

#5 [10 5] 0.0003 0.9997 0.0007 0.9993 

#6 [5 5 5] 0.0008 0.9996 0.0011 0.9994 

#7 [5 5 5 5] 0.0010 0.9994 0.0010 0.9992 

 
Figure 6. Structure of optimal artificial neural network model 

The ANN-predicted and experimental biosorption behaviors of 

GCs at different operating temperatures and various initial dye 

concentrations were depicted in Figure 7. The graphs 

corroborated with the applicability of the proposed optimal ANN 

in forecasting the CV biosorption onto the GCs since the 

experimental data and ANN-predicted data were in good 

agreement. 

 

Figure 7. Experimental and ANN-predicted biosorption of CV on GC at different temperatures of (a)25 ℃ (b)25 ℃ (c) 45 ℃ (initial 

pH=7.5, X=3.0 g.L-1)
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Figure 8. exhibited the plot of the normalized experimental and 

ANN-predicted output variable for CV biosorption onto GC 

during the training and test stages for each input variable. The 

satisfying harmony between the experimental and the ANN-

predicted data demonstrated the good generalization feature of 

the optimized ANN-model. 

 

Figure 8. Comparison of the normalized experimental data with 

ANN-predicted data (initial pH=7.5, Co=100 ppm, X=3.0 g.L-1, 

T= 25 ℃) 

4. Conclusions and Recommendations 

This work proposed a rational route for converting agricultural 

waste to a value-added material to be utilized in textile 

wastewater treatment and developed an optimized ANN model 

for forecasting cationic dye removal from aqueous media. With 

this scope, the waste orange peel was used as a carbon precursor 

to produce a carbonaceous biosorbent. As a result, GC with high 

specific surface area and ordered micro/mesoporous structure 

were synthesized via an environmentally friendly two step low-

cost production pathway. The effect of initial pH of the solution, 

initial dye concentration, the biosorbent dosage, and the 

operating temperature of the biosorption process on the 

biosorption capacity and the removal efficiency of the GC were 

investigated. The optimum biosorption conditions of CV onto 

GCs were experimentally determined to be pH 7.5, 3.0 g.L-1 

biosorbent dosage, and 25 ℃ operating temperature. At the 

optimal conditions, the experimental results proved that almost 

92% of CV could be successfully removed from aqueous 

solution by utilizing GCs as biosorbent. Furthermore, the ANN 

approach was applied to forecast the removal efficiency of the 

biosorbent. Four different independent variables including initial 

pH of the solution, initial dye concentration, the biosorbent 

dosage, and the operating temperature were used as input 

parameters to train the ANN model. The developed ANN model 

was trained by the Levengberg-Marquardt backpropagation 

algorithm. The various hidden layer topologies were tested to 

optimized-ANN model, and the optimal ANN model was 

established as 4-5-10-1 with R= 0.9995 and MSE=0.0004. The 

simulations confirmed the proposed ANN model was able to 

forecast the entire experimental dataset with higher performance 

metrics. Thus, it can be speculated that GC can be applied as a 

low-cost alternative biosorbent for removal of cationic dyes 

from aqueous media and the developed ANN model stands out 

as a high-performance technique to forecast the CV biosorption 

onto GC. 
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