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Abstract 

This paper proposes a new filter, Different Adaptive Modified Riesz Mean Filter (DAMRmF), for high-density salt-and-pepper noise 

(SPN) removal. DAMRmF operationalizes a pixel weight function and adaptivity condition of Adaptive Median Filter (AMF). In the 

simulation, the proposed filter is compared with Adaptive Frequency Median Filter (AFMF), Three-Values-Weighted Method (TVWM), 

Unbiased Weighted Mean Filter (UWMF), Different Applied Median Filter (DAMF), Adaptive Weighted Mean Filter (AWMF), 

Adaptive Cesáro Mean Filter (ACmF), Adaptive Riesz Mean Filter (ARmF), and Improved Adaptive Weighted Mean Filter (IAWMF) 

for 20 traditional test images with noise levels from 60% to 90%. The results show that DAMRmF outperforms the state-of-the-art 

filters in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) values. Moreover, DAMRmF also performs 

better than the state-of-the-art filters concerning mean PSNR and SSIM results. We finally discuss DAMRmF for further research. 

 

Keywords: Salt-and-pepper noise, Non-linear functions, Noise removal, Matrix algebra, Image denoising, Riesz mean.   

Gri Tonlamalı Görüntülerdeki Yüksek Yoğunluklu Tuz ve Biber 

Gürültüsünü Kaldırmak için Farklı Uyarlamalı Modifiye Riesz 

Ortalama Filtresi 

Öz 

Bu makale, yüksek yoğunluklu tuz ve biber gürültüsünün (SPN) giderilmesi için yeni bir Farklı Uyarlamalı Modifiye Riesz Ortalama 

Filtresi (DAMRmF) önermektedir. DAMRmF, bir piksel ağırlık fonksiyonu ve Uyarlamalı Medyan Filtresinin (AMF) uyarlanabilirlik 

koşulunu çalıştırır. Deneysel çalışmada önerilen filtre, %60 ve %90 kadar çeşitli gürültü yoğunluklarındaki 20 geleneksel test görüntüsü 

için Uyarlanabilir Frekans Medyan Filtresi (AFMF), Üç Değerli Ağırlıklı Yöntem (TVWM), Tarafsız Ağırlıklı Ortalama Filtresi 

(UWMF), Farklı Uygulanan Medyan Filtresi (DAMF), Uyarlamalı Ağırlıklı Ortalama Filtresi (AWMF), Uyarlamalı Cesáro Ortalama 

Filtresi (ACmF), Uyarlamalı Riesz Ortalama Filtresi (ARmF) ve Geliştirilmiş Uyarlamalı Ağırlıklı Ortalama Filtresi (IAWMF) 

karşılaştırılır. Sonuçlar, DAMRmF'nin Tepe Sinyal-Gürültü Oranı (PSNR) ve Yapısal Benzerlik (SSIM) değerleri açısından son 

teknoloji filtrelerden daha iyi performans sergilediğini göstermektedir. Ayrıca, ortalama PSNR ve SSIM sonuçlarına göre de DAMRmF 

son teknoloji filtrelerden daha iyi bir performansa sahiptir. Son olarak, gelecek çalışmalar için DAMRmF'yi tartışıyoruz. 

 
Anahtar Kelimeler: Tuz ve biber gürültüsü, Lineer olmayan fonksiyonlar, Gürültü kaldırma, Matris cebiri, Gürültü giderme, Riesz ortalama. 
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1. Introduction 

A great variety of the images such as medical images (Öziç 

& Özşen, 2020), astronomical images (Hausen & Robertson, 

2020), and satellite images (Zeren et al., 2020) can be acquired 

thanks to the development of technology. During the acquisition 

and transfer of these images, some corruption called noise may 

occur (Erkan & Gökrem, 2018). There are various noise types 

such as additive noise, Gaussian noise, impulse noise, and speckle 

noise affecting the images’ quality. Random valued impulse noise 

(RVIN) and fixed valued impulse noise (or salt-and-pepper noise) 

(SPN) are two types of impulse noise. RVIN replaces the images’ 

pixels with a random pixel value, while SPN does with a 

minimum or maximum pixel value (Gonzalez & Woods, 2018). 

The minimum and maximum pixel values are 0 and 255 for an 8-

bit greyscale image, respectively. SPN results from reasons such 

as sensors, electrical conditions, and transmission errors. The SPN 

is observed as white (255) and black (0) dots in the images. 

Therefore, the term “Salt-and-pepper noise” comes from there.  

Recently, various approaches have been proposed to remove 

SPN. Standard Median Filter (SMF) (Tukey, 1977; Pratt, 1975) 

and Adaptive Median Filter (Hwang & Haddad, 1995) are pioneer 

approaches and commonly employed for SPN removal. SMF 

utilizes fixed window size (3 × 3, 5 × 5, and 7 × 7, etc.) and is 

applied to all pixels. Unlike SMF, AMF using adaptive window 

size determines the pixels as noisy or noise-free and is 

implemented to only noisy pixels. Adaptive Weighted Mean Filter 

(AWMF) (Zhang & Li, 2014) and Unbiased Weighted Mean Filter 

(UWMF) (Kandemir et al., 2015) are designed to remove high-

density SPN.  AWMF firstly specifies the adaptive window size 

by constantly augmenting the window size till consecutive 

windows' maximum and minimum values are equal. If the 

considered pixel equals the maximum or minimum values, it may 

be a noisy pixel. If not, it is regarded as a noise-free pixel.  

Afterwards, possible noisy pixel replaces with the weighted mean 

of noise-free pixels. Here, it must be noted that the weighted mean 

accepts the weight of noisy pixels as 0 and those of the noise-free 

pixels as 1. UWMF has three phases for image denoising: It 

determines noisy pixels, recalibrates the pixel weights, and likely 

noisy pixel is replaced by recalibrated weighted mean.  

One of the other image denoising filters implementing 

weighted mean is Three-Values-Weighted Method (TVWM) (Lu 

et al., 2016). In the first phase, it uses a variable-size local window 

to analyze all extreme pixels. TVWM then classifies non-extreme 

pixels and locates them in the maximum, middle, or minimum 

groups. Using the weights obtained from distribution ratios of 

these groups, non-extreme pixels are weighted. The noisy pixel in 

the centre of the window is restored by employing these weighted 

values. 

Different Applied Median Filter (DAMF) (Erkan et al. 2018) 

is one of the state-of-the-art SPN filters. It bases on the median 

function and an adaptive window according to whether all pixels 

in the considered window are zero or not. Thus, it outperforms 

many filters at low-density, middle-density, and high-density 

SPN. AWMF performs better than DAMF at high-density SPN 

while DAMF does not achieve. DAMF's this deficiency has been 

eliminated by operationalizing Cesáro mean (arithmetic mean) 

instead of median and increasing adaptive windows, and Adaptive 

Cesáro Mean Filter (ACmF) (Enginoğlu et al., 2020) has been 

suggested. ACmF accepts the weights of the noisy-free pixels as 

1. To consider the weights of the noise-free pixels concerning the 

centre pixel in the window, a pixel similarity-based Adaptive 

Riesz Mean Filter (ARmF) (Enginoğlu et al., 2019) has been 

introduced. ARmF avails of the pixel similarity that calculates the 

similarity between the considered pixel and centre pixel in the 

window. If the pixels’ locations are close to each other, it produces 

a value close to 1. ARmF, firstly, constructs a binary matrix 

detecting the noisy pixels.  It then produces a new pixel value for 

each noisy pixel thanks to the pixel similarity of noise-free pixels 

to the centre and adaptive windowing concerning whether the 

window is equal to a zero matrix or not. In this way, ARmF 

achieves better Peak Signal-to-Noise Ratio (PSNR) and Structural 

Similarity (SSIM) (Wang et al., 2004) results than SMF, AMF, 

AWMF, and DAMF. Combining this filtering success of ARmF 

with the windowing advantage of AWMF, a novel high-density-

SPN filter, namely Improved Adaptive Weighted Mean Filter 

(IAWMF) (Erkan et al., 2020b), has been offered. As distinct from 

ARmF, IAWMF employs Euclidean pixel similarity to weight the 

noise-free pixels. Integrating this weighting process into AWMF, 

IAWMF outperforms AWMF, DAMF, and ARMF at any noise 

densities. Utilizing a new median named frequency median, an 

Adaptive Frequency Median Filter (AFMF) (Erkan et al., 2020a), 

an improved version of AMF, has been developed. AFMF 

produces better PSNR and SSIM rates than SMF, AMF, and 

DAMF developed through standard median function. 

In this study, we aim to avail of the adaptivity condition of 

AMF and pixel similarity of ARmF. We develop a high-density 

SPN filter, i.e., Different Adaptive Modified Riesz Mean Filter 

(DAMRmF). DAMRmF generates better PSNR and SSIM values 

than AFMF, TVWM, UWMF, DAMF, AWMF, ACmF, ARmF, 

and IAWMF at noise levels ranging from 60% to 90% for 20 

traditional test images (Weber, 1997).  

The rest of the paper is organized as follows: In Section 2, the 

basic definitions and notations needed in the following sections 

are presented. In Section 3, a novel SPN filter, DAMRmF, is 

proposed. In Section 4, an experimental study is carried out to 

demonstrate the proposed filter outperforms the state-of-the-art 

filters. Finally, the discussions and concluding remarks related to 

DAMRmF are provided for further research. 

2. Basic Definitions and Notations 

Definition 2.1 Let 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
 be an image matrix (IM) such 

that 𝑎𝑖𝑗  is an unsigned integer number and 0 ≤ 𝑎𝑖𝑗 ≤ 255. Then, 

𝑎𝑖𝑗  is called a noisy entry of 𝐴 if 𝑎𝑖𝑗 = 0 or 𝑎𝑖𝑗 = 255; otherwise, 

𝑎𝑖𝑗  is called a regular entry of 𝐴. 

Definition 2.2 Let 𝐴 be an IM. Then, 𝐴 is called a noise image 

matrix (NIM) if for some 𝑖 and 𝑗, 𝑎𝑖𝑗  is a noisy entry of 𝐴. 

Definition 2.3 Let 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
and 𝑡 ∈ {1,2, … ,min{𝑚, 𝑛}}. 

Then, the matrix [�̿�𝑟𝑠](𝑚+2𝑡)×(𝑛+2𝑡) called 𝑡-symmetric pad 

matrix of 𝐴 is denoted by �̿�𝑡−𝑠𝑦𝑚 (or briefly �̿�𝑡) and is defined as 

follows: 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑎𝑡𝑡 ⋯ 𝑎𝑡1 𝑎𝑡1 𝑎𝑡2 ⋯ 𝑎𝑡𝑛 𝑎𝑡𝑛 ⋯ 𝑎𝑡(𝑛−𝑡+1)

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑎1𝑡 ⋯ 𝑎11 𝑎11 𝑎12 ⋯ 𝑎1𝑛 𝑎1𝑛 ⋯ 𝑎1(𝑛−𝑡+1)

𝑎1𝑡 ⋯ 𝑎11 𝒂𝟏𝟏 𝒂𝟏𝟐 ⋯ 𝒂𝟏𝒏 𝑎1𝑛 ⋯ 𝑎1(𝑛−𝑡+1)

𝑎2𝑡 ⋯ 𝑎21 𝒂𝟐𝟏 𝒂𝟐𝟐 ⋯ 𝒂𝟐𝒏 𝑎2𝑛 ⋯ 𝑎2(𝑛−𝑡+1)

𝑎3𝑡 ⋯ 𝑎31 𝒂𝟑𝟏 𝒂𝟑𝟐 ⋯ 𝒂𝟑𝒏 𝑎3𝑛 ⋯ 𝑎3(𝑛−𝑡+1)

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑎𝑚𝑡 ⋯ 𝑎𝑚1 𝒂𝒎𝟏 𝒂𝒎𝟐 ⋯ 𝒂𝒎𝒏 𝑎𝑚𝑛 ⋯ 𝑎𝑚(𝑛−𝑡+1)

𝑎𝑚𝑡 ⋯ 𝑎𝑚1 𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛 𝑎𝑚𝑛 ⋯ 𝑎𝑚(𝑛−𝑡+1)

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑎(𝑚−𝑡+1)𝑡⋯𝑎(𝑚−𝑡+1)1𝑎(𝑚−𝑡+1)1𝑎(𝑚−𝑡+1)2⋯𝑎(𝑚−𝑡+1)𝑛𝑎(𝑚−𝑡+1)𝑛⋯𝑎(𝑚−𝑡+1)(𝑛−𝑡+1)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                  (1) 
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Definition 2.4 Let 𝐴 be an NIM. Then, the matrix 𝐵 ≔ [𝑏𝑖𝑗]𝑚×𝑛
 

is called a binary matrix of 𝐴 where 

𝑏𝑖𝑗 = {
0,
1,

  𝑎𝑖𝑗  is a noisy entry of 𝐴

otherwise
                                                 (2) 

Example 2.1 Let 𝐴 ≔ [

255 87 89

45 255 0

100 22 63

]. Then, 

 

�̿�2 =

[
 
 
 
 
 
 
255 45 45 255 0 0 255
87 255 255 87 89 89 87
87 255 𝟐𝟓𝟓 𝟖𝟕 𝟖𝟗 89 87
255 45 𝟒𝟓 𝟐𝟓𝟓 𝟎 0 255
22 100 𝟏𝟎𝟎 𝟐𝟐 𝟔𝟑 63 22
22 100 100 22 63 63 22
255 45 45 255 0 0 255]

 
 
 
 
 
 

7×7

 

 

Definition 2.5 Let 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
 and 𝑘 ∈ {1,2, … , t}. Then, the 

matrix 

[
 
 
 
 
�̿�(𝑖+𝑡−𝑘)(𝑗+𝑡−𝑘) ⋯ �̿�(𝑖+𝑡−𝑘)(𝑗+𝑡+𝑘)

⋮ �̿�(𝑖+𝑡)(𝑗+𝑡) ⋮

�̿�(𝑖+𝑡+𝑘)(𝑗+𝑡−𝑘) ⋯ �̿�(𝑖+𝑡+𝑘)(𝑗+𝑡+𝑘)]
 
 
 
 

(2𝑘+1)×(2𝑘+1)

   (3) 

is called 𝑘-approximate matrix of 𝑎𝑖𝑗  in �̿�𝑡 and is denoted by 𝐴𝑖𝑗
𝑘 . 

Example 2.2 Let’s consider Example 2.1. Then, 

 

𝐴32
1 = [

�̿�43 �̿�44 �̿�45

�̿�53 �̿�54 �̿�55

�̿�63 �̿�64 �̿�65

] = [

45 255 0

100 22 63

100 22 63

]. 

Definition 2.6 A matrix with all its entries being zero is called a 

zero or null matrix and is denoted by [0]. 

Definition 2.7 Let 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
. The matrix �̃� ≔ [�̃�1𝑢]1×(𝑚.𝑛) 

consists of all entries (elements) of A and being non-decreasing is 

called an entry matrix (EM) of 𝐴. 

Example 2.3 Let us consider Example 2.2. Then, �̃�32
1 =

[0 22 22    45 63 63   100 100 255]. 

Definition 2.8 Let �̃� ≔ [�̃�1𝑢]1×(𝑚.𝑛) be an EM of 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
. 

The value  

med(�̃�) ≔ {

�̃�
1(

𝑚.𝑛+1

2
)
 ,

1

2
(�̃�

1(
𝑚.𝑛

2
)
+ �̃�

1(
𝑚.𝑛+2

2
)
) ,

  

𝑚. 𝑛 + 1

2
∈ ℤ

𝑚. 𝑛

2
∈ ℤ

               (4) 

is called a median of �̃�. 

Definition 2.9 Let 𝐴 be an IM. Then, the value  

ps(𝑎𝑖𝑗 , 𝑎𝑠𝑡) ≔ (
1

1 + |𝑖 − 𝑠| + |𝑗 − 𝑡|
)

2 

 

is called pixel similarity between 𝑎𝑖𝑗  and 𝑎𝑠𝑡 

Definition 2.10 Let A be an NIM. Then the value 

Rm(𝐴𝑖𝑗
𝑘 ) ≔

∑ ps(𝑎𝑠𝑡 , 𝑎(𝑘+1)(𝑘+1))𝑎𝑠𝑡(𝑠,𝑡)∈𝐼𝑖𝑗
𝑘

∑ ps(𝑎𝑠𝑡 , 𝑎(𝑘+1)(𝑘+1))(𝑠,𝑡)∈𝐼𝑖𝑗
𝑘

                              (5) 

is called Riesz mean of 𝐴𝑖𝑗
𝑘 . 

Here, 𝐼𝑖𝑗
𝑘 ≔ {(𝑠, 𝑡):  𝑎𝑠𝑡  𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑒𝑛𝑡𝑟𝑦 𝑜𝑓 𝐴𝑖𝑗

𝑘 } 

3. Proposed Salt-and-Pepper Filter 

In this section, firstly, we present pseudo-codes of AMF 

(Hwang & Haddad, 1995) (Algorithm 1) and ARmF (Enginoğlu 

et al., 2019) (Algorithm 2). AMF operates median filter and 

median-based adaptivity condition to remove SPN. ARmF utilizes 

pixel similarity-based Riesz mean of the considered window. 

Besides, it employs an adaptivity condition that relies on whether 

the k-approximate matrix equals a zero matrix or not. 

Algorithm 1. 

Adaptive Median Filter (AMF) 

Input: NIM 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
 

Output: Denoised 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
 

Initialize 𝑘𝑚𝑎𝑥 = 9 

Compute �̿�𝑘𝑚𝑎𝑥
 

For all 𝑖 and 𝑗 

For k from 1 to 𝑘𝑚𝑎𝑥 

If (min(�̃�𝑖𝑗
𝑘 ) < med(�̃�𝑖𝑗

𝑘 )𝐀𝐍𝐃 med(�̃�𝑖𝑗
𝑘 ) < max(�̃�𝑖𝑗

𝑘 ))AND(𝑎𝑖𝑗 = min(�̃�𝑖𝑗
𝑘 )𝐎𝐑 𝑎𝑖𝑗 = max(�̃�𝑖𝑗

𝑘 ))  

 𝑎𝑖𝑗 ← med(�̃�𝑖𝑗
𝑘 ) 

Break 

End If 

End For 

End For 

Algorithm 2. 

Adaptive Riesz Mean Filter (ARmF) 

Input: NIM 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
 such that min{𝑚, 𝑛} ≥ 5 

Output: Denoised 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
 

Convert 𝐴 from uint8 form to double form 

For 𝑡 from 5 to 1 

Compute the binary matrix 𝐵 ≔ [𝑏𝑖𝑗]𝑚×𝑛
 of 𝐴 

Compute �̿�𝑡 and �̿�𝑡 

For all 𝑖 and 𝑗 

If 𝑏𝑖𝑗 = 0 

For k from 1 to 𝑡 

If 𝐵𝑖𝑗
𝑘 ≠ [0] 

𝑎𝑖𝑗 ← Rm(𝐴𝑖𝑗
𝑘 )  

Break 

End If 

End For 

End If 

End For 

End For 

Secondly, we define modified Riesz mean (MRm) and propose 

Different Adaptive Modified Riesz Mean Filter (DAMRmF) 

employing MRm and adaptivity condition of AMF. DAMRmF 

removes SPN operationalizing the weight of the considered pixel 

according to the centre pixel in the window. DAMRmF is 

designed to be outperformed at high-density SPN. 

Definition 2.11 Let A be an NIM. Then the value 

MRm(𝐴𝑖𝑗
𝑘 ) ≔

∑ pw(𝑎𝑠𝑡 , 𝑘)𝑎𝑠𝑡(𝑠,𝑡)∈𝐼𝑖𝑗
𝑘

∑ pw(𝑎𝑠𝑡 , 𝑘)(𝑠,𝑡)∈𝐼𝑖𝑗
𝑘

                                           (6) 

is called Modified Riesz mean of 𝐴𝑖𝑗
𝑘 . Here, pw(𝑎𝑠𝑡, 𝑘) ≔

(
1

1+(𝑘+1−𝑠)2+(𝑘+1−𝑡)2
)
2 

and 𝐼𝑖𝑗
𝑘 ≔ {(𝑠, 𝑡):  𝑎𝑠𝑡 is a regular entry of 𝐴𝑖𝑗

𝑘 } 

stand for the pixel weight of 𝑎𝑠𝑡 in 𝐴𝑖𝑗
𝑘  and the set of all indexes 

of the regular pixels in 𝐴𝑖𝑗
𝑘 , respectively. 
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The pixel weight function to be employed with the adaptivity 

condition simultaneously is defined to deal with high-density 

SPN. It produces different weights and these weights more 

efficacious than those of pixel similarity in ARmF. Thus, DARmF 

using the pixel weight performs better than the state-of-the-art 

filters in high-density SPN for 20 traditional greyscale images. 

Finally, we provide the pseudo-code of DAMRmF in Algorithm 3 

and its flowchart in Figure 1.  

Algorithm 3. 

Different Adaptive Modified Riesz Mean Filter (DAMRmF) 

Input: Read an NIM 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
 such that min{𝑚, 𝑛} ≥ 5 

Output: Denoised 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
 

Convert 𝐴 from uint8 form to double form 

For 𝑡 from 5 to 1 

Compute the binary matrix 𝐵 ≔ [𝑏𝑖𝑗]𝑚×𝑛
 of 𝐴 

Compute �̿�𝑡 and �̿�𝑡 

For all 𝑖 and 𝑗 

If 𝑏𝑖𝑗 = 0 

For k from 1 to 𝑡 

If (0 < med(�̃�𝑖𝑗
𝑘 ) 𝐀𝐍𝐃 med(�̃�𝑖𝑗

𝑘 ) < 255) AND (𝑎𝑖𝑗 = 0 𝐎𝐑 𝑎𝑖𝑗 = 255) 

𝑎𝑖𝑗 ← MRm(𝐴𝑖𝑗
𝑘 )  

Break 

End If 

End For 

End If 

End For 

End For 

 
Figure 1. The flowchart of DAMRmF 

4. Experimental Study 

In this part of the study, we compare the proposed DAMRmF with 

AFMF (Erkan et al., 2020a), TVWA (Lu et al., 2016), UWMF 

(Kandemir et al., 2015), DAMF (Erkan et al., 2018), AWMF 

(Zang & Li, 2014), ACmF (Enginoğlu et al., 2020), ARmF 

(Enginoğlu et al., 2019), and IAWMF (Erkan et al., 2020b) in 

terms of PSNR and SSIM (Wang et al., 2004) results. 

4.1. Image Quality Assessment Metrics 

In this subsection, we present the mathematical notations of 

PSNR and SSIM. Let 𝑋 ≔ [𝑥𝑖𝑗] and 𝑌 ≔ [𝑦𝑖𝑗] be the original 

image and restored image, respectively. 

PSNR is defined by 

PSNR(𝑋, 𝑌) ≔ 10log (
2552

MSE(𝑋, 𝑌)
)                                              (7) 

where MSE(𝑋, 𝑌) represents the Mean Square Error, and it is 

defined by 

MSE(𝑋, 𝑌) ≔
1

𝑚𝑛
∑∑(𝑥𝑖𝑗 − 𝑦𝑖𝑗)

2
𝑛

𝑗=1

𝑚

𝑖=1

                                           (8) 

SSIM is defined by 

SSIM(𝑋, 𝑌) ≔
(2𝜇𝑋𝜇𝑌 + 𝐶1) + (2𝜎𝑋𝑌 + 𝐶2)

(𝜇𝑋
2 + 𝜇𝑌

2 + 𝐶1) + (𝜎𝑋
2 + 𝜎𝑌

2 + 𝐶2)
                  (10) 

where 𝜇𝑋, 𝜇𝑌, 𝜎𝑋, 𝜎𝑌, and 𝜎𝑋𝑌 are the average intensities, 
standard deviations, and cross-covariance of images 𝑋 and 𝑌, 
respectively. Additionally, 𝐶1 ≔ (𝐾1𝐿)2 and 𝐶2 ≔ (𝐾2𝐿)2 are 
two constants such that 𝐾1 = 0.01, 𝐾2 = 0.03 and 𝐿 = 255 
for 8-bit grayscale images.  

4.2. Simulation Results 

 In this subsection, we simulate DAMRmF, AFMF, TVWA, 

UWMF, DAMF, AWMF, ACmF, ARmF, and IAWMF using 20 

traditional test images (Weber, 1997) with 512 × 512 (Lena, 

Cameraman, Barbara, Baboon, Peppers, Living Room, Lake, 

Plane, Hill, Pirate, Boat, House, Bridge, Elaine, Flintstones, 

Flower, Parrot, Dark-Haired Woman, Blonde Woman, and 

Einstein). We carry out the simulations by utilizing MATLAB 

R2020b and a laptop with I(R) Core(TM) CPU i5-

4200H@2.8GHz and 8 GB RAM. 

Table 1 presents the mean PSNR results of the filters for 20 

traditional images with high-density SPN. The results show that 

DAMRmF performs better than the others in considered SPN 

ratios. 

Table 1. Mean PSNR results for 20 traditional images with 

different SPN ratios ranging from 60% to 90% 

Filters 60% 65% 70% 75% 80% 85% 90% Mean 

AFMF 28.15 27.38 26.44 25.45 24.21 22.74 20.64 25.00 

TVWA 30.09 29.38 28.62 27.79 26.73 24.46 19.01 26.58 

UWMF 30.00 29.31 28.67 27.92 27.07 26.22 25.08 27.75 

DAMF 29.74 29.07 28.38 27.62 26.76 25.80 24.43 27.40 

AWMF 30.25 29.54 28.79 27.97 27.07 26.06 24.74 27.77 

ACmF 30.36 29.61 28.83 27.99 27.08 26.07 24.75 27.81 

ARmF 30.57 29.79 28.97 28.10 27.16 26.12 24.78 27.93 

IAWMF 30.73 30.02 29.27 28.46 27.55 26.56 25.29 28.27 

DAMRmF 30.74 30.04 29.32 28.50 27.64 26.68 25.41 28.33 
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Secondly, Table 2 offers the mean SSIM results of the filters 

for 20 traditional images with high-density SPN. The results 

manifest that DAMRmF outperforms the others in considered 

SPN ratios. 

Thirdly, Table 3 and 4 are related to PSNR and SSIM results 

for several test images with various high SPN ratios, respectively. 

DAMRmF exhibits maximum performance concerning PSNR 

and SSIM values. Moreover, DAMRmF outperforms IAWMF 

being efficacious for high-density SPN. 

Fourthly, Figure 2 offers the visual results of the methods 

concerning denoising of the “Lena” image with an SPN ratio of 

90%. Moreover, Figure 3 presents the visual results of denoising 

of the proposed method for “Pepper” image with SPN ratios of 

60%, 70%, 80%, and 90%. Although AFMF removes the noise to 

a great extent, the denoised image has blurring details, and AFMF 

has not preserved the edges in “Lena” image. The image denoised 

by TVWM has black speckle exceedingly as well as it has blurring 

details. Denoising results of DAMRmF and the others efficacious. 

Moreover, DAMRmF has smooth details and display a better 

visual quality than the others. 

Fifthly, the PSNR and SSIM graphs are provided in Figure 4 

and 5 concerning “House”, “Elaine”, “Blonde Woman”, and 

“Lake” images, respectively. 

Table 2. Mean SSIM results for 20 traditional images with 

different SPN ratios ranging from 60% to 90% 

Filters 60% 65% 70% 75% 80% 85% 90% Mean 

AFMF 0.8461 0.8259 0.8007 0.7694 0.7296 0.6784 0.6039 0.7506 

TVWA 0.8882 0.8710 0.8511 0.8271 0.7972 0.7410 0.5671 0.7918 

UWMF 0.8855 0.8687 0.8499 0.8278 0.8016 0.7696 0.7245 0.8182 

DAMF 0.8804 0.8635 0.8438 0.8204 0.7926 0.7573 0.7045 0.8089 

AWMF 0.8871 0.8703 0.8506 0.8267 0.7985 0.7629 0.7113 0.8153 

ACmF 0.8893 0.8719 0.8518 0.8276 0.7991 0.7632 0.7115 0.8163 

ARmF 0.8929 0.8756 0.8554 0.8311 0.8023 0.7660 0.7139 0.8196 

IAWMF 0.8952 0.8794 0.8612 0.8390 0.8126 0.7791 0.7317 0.8283 

DAMRmF 0.8959 0.8802 0.8621 0.8400 0.8142 0.7816 0.7348 0.8298 

 

Table 3. PSNR results of the filters for several traditional images with different SPN ratios ranging from 60% to 90% 

Images Filters 60% 65% 70% 75% 80% 85% 90% Mean 

L
en

a 

AFMF 30.03 29.09 28.11 27.24 25.92 24.29 22.02 26.67 
TVWA 32.27 31.47 30.49 29.71 28.48 25.87 19.52 28.26 
UWMF 32.09 31.26 30.40 29.74 28.83 27.89 26.60 29.54 

DAMF 31.75 31.04 30.17 29.44 28.49 27.50 26.02 29.20 

AWMF 32.19 31.41 30.48 29.72 28.75 27.76 26.29 29.51 
ACmF 32.30 31.48 30.52 29.74 28.76 27.76 26.29 29.55 

ARmF 32.52 31.67 30.63 29.83 28.85 27.82 26.32 29.66 
IAWMF 32.69 31.87 30.98 30.23 29.28 28.25 26.85 30.02 

DAMRmF 32.72 31.91 31.03 30.29 29.37 28.34 26.95 30.09 

P
ep

p
er

 

AFMF 29.20 28.61 27.74 26.46 24.98 23.16 20.69 25.83 

TVWA 31.73 30.99 30.25 29.54 28.24 26.15 20.02 28.13 

UWMF 31.31 30.67 30.06 29.44 28.40 27.66 26.51 29.15 
DAMF 31.13 30.53 29.89 29.17 28.07 27.24 25.85 28.84 

AWMF 31.71 30.96 30.28 29.53 28.36 27.46 26.13 29.20 
ACmF 31.78 31.02 30.30 29.54 28.36 27.46 26.14 29.23 

ARmF 31.85 31.09 30.35 29.60 28.39 27.49 26.16 29.28 

IAWMF 31.94 31.28 30.65 29.96 28.82 27.96 26.71 29.62 
DAMRmF 32.13 31.46 30.82 30.11 28.94 28.13 26.86 29.78 

L
ak

e 

AFMF 26.60 25.83 24.68 23.61 22.30 20.99 18.91 23.27 
TVWA 28.85 28.13 27.22 26.39 25.44 23.74 18.40 25.45 

UWMF 28.77 28.10 27.29 26.52 25.63 24.77 23.55 26.38 
DAMF 28.36 27.69 26.86 26.06 25.21 24.30 22.89 25.91 

AWMF 28.78 28.10 27.21 26.36 25.47 24.54 23.11 26.22 

ACmF 28.92 28.19 27.27 26.39 25.49 24.54 23.11 26.28 
ARmF 29.13 28.36 27.42 26.51 25.58 24.61 23.16 26.40 

IAWMF 29.28 28.60 27.73 26.91 25.99 25.05 23.71 26.75 
DAMRmF 29.33 28.68 27.80 26.97 26.05 25.16 23.83 26.83 

D
ar

k
-H

ai
re

d
 W

o
m

an
 AFMF 35.69 34.54 33.05 31.77 30.09 27.48 24.53 31.02 

TVWA 38.28 37.38 36.65 35.23 33.70 28.53 20.47 32.89 

UWMF 38.07 37.19 36.60 35.56 34.68 33.37 32.20 35.38 

DAMF 37.56 36.81 36.14 35.12 34.19 32.72 31.08 34.80 
AWMF 38.27 37.36 36.64 35.54 34.60 33.07 31.74 35.32 

ACmF 38.35 37.44 36.68 35.57 34.61 33.07 31.74 35.35 
ARmF 38.55 37.60 36.80 35.67 34.69 33.14 31.78 35.46 

IAWMF 38.81 37.93 37.21 36.14 35.21 33.71 32.46 35.92 
DAMRmF 38.99 38.08 37.41 36.30 35.41 33.91 32.61 36.10 
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Table 4. SSIM results of the filters for several traditional images with different SPN ratios ranging from 60% to 90% 

Images Filters 60% 65% 70% 75% 80% 85% 90% Mean 

L
en

a 

AFMF 0.8857 0.8706 0.8526 0.8285 0.8007 0.7592 0.6946 0.8131 
TVWA 0.9140 0.9005 0.8837 0.8647 0.8392 0.7875 0.5970 0.8267 

UWMF 0.9108 0.8972 0.8813 0.8645 0.8443 0.8185 0.7812 0.8568 

DAMF 0.9079 0.8949 0.8784 0.8594 0.8375 0.8100 0.7663 0.8506 
AWMF 0.9131 0.8999 0.8835 0.8646 0.8426 0.8156 0.7731 0.8561 

ACmF 0.9144 0.9009 0.8841 0.8650 0.8429 0.8156 0.7731 0.8566 
ARmF 0.9173 0.9038 0.8866 0.8674 0.8453 0.8173 0.7745 0.8589 

IAWMF 0.9194 0.9071 0.8921 0.8750 0.8555 0.8295 0.7915 0.8671 
DAMRmF 0.9205 0.9085 0.8939 0.8771 0.8582 0.8334 0.7951 0.8695 

P
ep

p
er

 

AFMF 0.8178 0.8039 0.7864 0.7613 0.7263 0.6827 0.6093 0.7411 

TVWA 0.8627 0.8439 0.8254 0.8037 0.7750 0.7309 0.5785 0.7743 
UWMF 0.8442 0.8268 0.8105 0.7922 0.7688 0.7463 0.7163 0.7864 

DAMF 0.8508 0.8332 0.8151 0.7938 0.7669 0.7396 0.7003 0.7857 
AWMF 0.8630 0.8441 0.8258 0.8034 0.7751 0.7466 0.7078 0.7951 

ACmF 0.8635 0.8445 0.8259 0.8035 0.7752 0.7464 0.7078 0.7952 

ARmF 0.8613 0.8424 0.8240 0.8021 0.7740 0.7458 0.7079 0.7939 
IAWMF 0.8611 0.8445 0.8286 0.8099 0.7851 0.7605 0.7279 0.8025 

DAMRmF 0.8681 0.8522 0.8365 0.8179 0.7935 0.7696 0.7362 0.8106 

L
ak

e 

AFMF 0.8353 0.8137 0.7850 0.7491 0.7075 0.6516 0.5746 0.7310 

TVWA 0.8777 0.8596 0.8361 0.8108 0.7800 0.7256 0.5556 0.7779 
UWMF 0.8670 0.8496 0.8287 0.8064 0.7793 0.7470 0.7009 0.7970 

DAMF 0.8698 0.8520 0.8287 0.8039 0.7739 0.7362 0.6816 0.7923 

AWMF 0.8765 0.8587 0.8355 0.8103 0.7800 0.7425 0.6873 0.7987 
ACmF 0.8789 0.8606 0.8369 0.8112 0.7807 0.7429 0.6875 0.7998 

ARmF 0.8801 0.8620 0.8385 0.8130 0.7827 0.7449 0.6899 0.8016 
IAWMF 0.8808 0.8647 0.8437 0.8210 0.7933 0.7589 0.7094 0.8103 

DAMRmF 0.8840 0.8680 0.8473 0.8240 0.7963 0.7632 0.7135 0.8138 

D
ar

k
-H

ai
re

d
 W

o
m

an
 AFMF 0.9392 0.9294 0.9164 0.9001 0.8790 0.8435 0.7858 0.8848 

TVWA 0.9567 0.9493 0.9410 0.9291 0.9163 0.8695 0.6797 0.8917 

UWMF 0.9543 0.9469 0.9394 0.9289 0.9193 0.9037 0.8832 0.9251 
DAMF 0.9524 0.9452 0.9367 0.9251 0.9140 0.8955 0.8660 0.9193 

AWMF 0.9566 0.9493 0.9409 0.9293 0.9184 0.8999 0.8741 0.9241 
ACmF 0.9572 0.9499 0.9413 0.9296 0.9186 0.9000 0.8742 0.9244 

ARmF 0.9584 0.9511 0.9425 0.9308 0.9197 0.9010 0.8751 0.9255 
IAWMF 0.9597 0.9533 0.9459 0.9360 0.9266 0.9104 0.8890 0.9315 

DAMRmF 0.9612 0.9548 0.9480 0.9381 0.9296 0.9142 0.8937 0.9342 

 

 
Noisy Image 

PSNR/SSIM (5.90/0.0061) 

 
AFMF 

PSNR/SSIM (22.02/0.6946) 

 
TVWM 

PSNR/SSIM (19.52/0.5970) 

 
UWMF 

PSNR/SSIM (26.60/0.7812) 

 
DAMF 

PSNR/SSIM (26.02/0.7663) 

 
AWMF 

PSNR/SSIM (26.29/0.7731) 

 
ACmF 

PSNR/SSIM (26.29/0.7731) 

 
ARmF 

PSNR/SSIM (26.32/0.7745) 

 
IAWMF 

PSNR/SSIM (26.85/0.7915) 

 
DAMRmF (Proposed) 

PSNR/SSIM (26.95/0.7951) 
Figure 2. Image denoising results of the compared filters with SPN level of 90% of the “Lena” image (512 × 512 pixels). 
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SPN ratio 60%  

PSNR/SSIM (7.51/0.0179) 

 

 
SPN ratio 70%  

PSNR/SSIM (6.84/0.133) 

 
SPN ratio 80%  

PSNR/SSIM (6.24/0.0086) 

 
SPN ratio 90%  

PSNR/SSIM (5.75/0.0063) 

 
Denoising of SPN 

PSNR/SSIM (32.13/0.8681) 

 
Denoising of SPN 

PSNR/SSIM (30.82/0.8365) 

 
Denoising of SPN 

PSNR/SSIM (28.94/0.7935) 

 
Denoising of SPN 

PSNR/SSIM (26.86/0.7362) 
Figure 3. Image denoising results of the proposed filter with various SPN levels of the “Pepper” image (512 × 512 pixels). 
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(d) 

Figure 4. PSNR Graphs of the several traditional images: (a) House, (b) Elaine, (c) Blonde Woman, and (d) Lake  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. SSIM Graphs of the several traditional images: (a) House, (b) Elaine, (c) Blonde Woman, and (d) Lake  

Finally, Table 5 shows the mean running times (seconds) of 

the methods obtained during the simulations. Even though 

IAWMF performs better than the other state-of-the-art filters, it 

operates slower than the others. On the other hand, DAMRmF has 

an advantage over IAWMF concerning denoising and running 

time. 

Table 5. Mean running time for 20 traditional images with 

different SPN ratios ranging from 60% to 90% (in second) 

Filters 60% 65% 70% 75% 80% 85% 90% Mean 

AFMF 8.82 8.57 8.32 8.08 8.79 7.81 7.49 8.27 

TVWA 4.22 4.03 3.88 3.82 3.54 3.28 3.19 3.71 

UWMF 1.14 1.16 1.62 1.81 1.64 1.98 2.26 1.66 

DAMF 0.84 0.87 0.92 1.01 1.12 1.25 1.40 1.06 

AWMF 2.90 2.79 2.80 2.84 2.99 3.19 3.47 3.00 

ACmF 1.18 1.23 1.34 1.46 1.62 1.86 2.06 1.54 

ARmF 0.66 0.69 0.76 0.82 0.94 1.14 1.24 0.89 

IAWMF 10.34 10.60 11.97 12.87 14.76 17.53 22.23 14.33 

DAMRmF 3.35 3.82 4.48 5.90 6.50 7.78 10.31 6.02 

5. Conclusions and Recommendations 

In this study, we defined Modified Riesz Mean replacing the 

pixel similarity in Riesz mean with pixel weight function. We then 

employed the Modified Riesz Mean and the adaptivity condition 

of AMF (Hwang & Haddad, 1995) simultaneously, and developed 

an efficacious SPN filter, namely DAMRmF, for high-density 

SPN removal. To indicate the denoising success of the proposed 

filter, we carried out an experimental study. The simulation results 

manifest that our DAMRmF outperforms AFMF (Erkan et al., 

2020a), TVWA (Lu et al., 2016), UWMF (Kandemir et al., 2015), 

DAMF (Erkan et al., 2018), AWMF (Zang & Li, 2014), ACmF 

(Enginoğlu et al., 2020), ARmF (Enginoğlu et al., 2019), and 

IAWMF (Erkan et al., 2020b) according to PSNR and SSIM 

(Wang et al., 2004) results for SPN densities varying from 60% to 

90%. Besides, visual results herein validated the numerical results 

provided in the Simulation Results Subsection. Though there is 

very little difference between PSNR and SSIM values of 

DAMRmF and IAWMF, DAMRmF runs faster than IAWMF. 

Therefore, DAMRmF outperforms IAWMF in terms of PSNR 

value, SSIM value, and running time, and it can be preferred 

instead of IAWMF. In the experimental study, due to widely using 

and knowing of the PSNR quality metric, we utilized this quality 

metric even though it may not generate reliable results. 

Although DAMRmF produces better denoising results in 

high-density SPN removal than the others, it can be improved 

more through new adaptivity condition or pixel weight. On the 

other hand, this improvement can be achieved too by including 

the noise density of the image in the denoising process. Therefore, 

further research should be focused the defining a new pixel weight 

function or adaptivity condition. 
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