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Abstract

This paper proposes a new filter, Different Adaptive Modified Riesz Mean Filter (DAMRmF), for high-density salt-and-pepper noise
(SPN) removal. DAMRmF operationalizes a pixel weight function and adaptivity condition of Adaptive Median Filter (AMF). In the
simulation, the proposed filter is compared with Adaptive Frequency Median Filter (AFMF), Three-Values-Weighted Method (TVWM),
Unbiased Weighted Mean Filter (UWMF), Different Applied Median Filter (DAMF), Adaptive Weighted Mean Filter (AWMEF),
Adaptive Cesaro Mean Filter (ACmF), Adaptive Riesz Mean Filter (ARmF), and Improved Adaptive Weighted Mean Filter IAWMF)
for 20 traditional test images with noise levels from 60% to 90%. The results show that DAMRmF outperforms the state-of-the-art
filters in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) values. Moreover, DAMRmMF also performs
better than the state-of-the-art filters concerning mean PSNR and SSIM results. We finally discuss DAMRmF for further research.

Keywords: Salt-and-pepper noise, Non-linear functions, Noise removal, Matrix algebra, Image denoising, Riesz mean.

Gri Tonlamah Goriintillerdeki Yiiksek Yogunluklu Tuz ve Biber
Giirultisiini Kaldirmak icin Farklhh Uyarlamali Modifiye Riesz
Ortalama Filtresi

Oz

Bu makale, yiiksek yogunluklu tuz ve biber giiriiltiisiiniin (SPN) giderilmesi i¢in yeni bir Farkli Uyarlamali Modifiye Riesz Ortalama
Filtresi (DAMRmF) 6nermektedir. DAMRmMF, bir piksel agirlik fonksiyonu ve Uyarlamali Medyan Filtresinin (AMF) uyarlanabilirlik
kosulunu ¢aligtirir. Deneysel ¢aligmada 6nerilen filtre, %60 ve %90 kadar cesitli giiriiltii yogunluklarindaki 20 geleneksel test goriintiisii
i¢in Uyarlanabilir Frekans Medyan Filtresi (AFMF), U¢ Degerli Agirlikli Yéntem (TVWM), Tarafsiz Agirlikli Ortalama Filtresi
(UWMF), Farkli Uygulanan Medyan Filtresi (DAMF), Uyarlamali Agirlikli Ortalama Filtresi (AWMF), Uyarlamali Cesaro Ortalama
Filtresi (ACmF), Uyarlamali Riesz Ortalama Filtresi (ARmF) ve Gelistirilmis Uyarlamali Agirlikli Ortalama Filtresi (IAWMF)
karsilastirilir. Sonuglar, DAMRmF'nin Tepe Sinyal-Giiriiltii Oram1 (PSNR) ve Yapisal Benzerlik (SSIM) degerleri agisindan son
teknoloji filtrelerden daha iyi performans sergiledigini gostermektedir. Ayrica, ortalama PSNR ve SSIM sonuglarina gore de DAMRmMF
son teknoloji filtrelerden daha iyi bir performansa sahiptir. Son olarak, gelecek ¢aligmalar icin DAMRmF'yi tartisiyoruz.

Anahtar Kelimeler: Tuz ve biber giiriiltiisii, Lineer olmayan fonksiyonlar, Giiriilti kaldirma, Matris cebiri, Giiriiltii giderme, Riesz ortalama.
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1. Introduction

A great variety of the images such as medical images (Ozig
& Ozsen, 2020), astronomical images (Hausen & Robertson,
2020), and satellite images (Zeren et al., 2020) can be acquired
thanks to the development of technology. During the acquisition
and transfer of these images, some corruption called noise may
occur (Erkan & Gokrem, 2018). There are various noise types
such as additive noise, Gaussian noise, impulse noise, and speckle
noise affecting the images’ quality. Random valued impulse noise
(RVIN) and fixed valued impulse noise (or salt-and-pepper noise)
(SPN) are two types of impulse noise. RVIN replaces the images’
pixels with a random pixel value, while SPN does with a
minimum or maximum pixel value (Gonzalez & Woods, 2018).
The minimum and maximum pixel values are 0 and 255 for an 8-
bit greyscale image, respectively. SPN results from reasons such
as sensors, electrical conditions, and transmission errors. The SPN
is observed as white (255) and black (0) dots in the images.
Therefore, the term “Salt-and-pepper noise” comes from there.

Recently, various approaches have been proposed to remove
SPN. Standard Median Filter (SMF) (Tukey, 1977; Pratt, 1975)
and Adaptive Median Filter (Hwang & Haddad, 1995) are pioneer
approaches and commonly employed for SPN removal. SMF
utilizes fixed window size (3 X 3,5X% 5, and 7 X 7, etc.) and is
applied to all pixels. Unlike SMF, AMF using adaptive window
size determines the pixels as noisy or noise-free and is
implemented to only noisy pixels. Adaptive Weighted Mean Filter
(AWMF) (Zhang & Li, 2014) and Unbiased Weighted Mean Filter
(UWMF) (Kandemir et al., 2015) are designed to remove high-
density SPN. AWMEF firstly specifies the adaptive window size
by constantly augmenting the window size till consecutive
windows' maximum and minimum values are equal. If the
considered pixel equals the maximum or minimum values, it may
be a noisy pixel. If not, it is regarded as a noise-free pixel.
Afterwards, possible noisy pixel replaces with the weighted mean
of noise-free pixels. Here, it must be noted that the weighted mean
accepts the weight of noisy pixels as 0 and those of the noise-free
pixels as 1. UWMF has three phases for image denoising: It
determines noisy pixels, recalibrates the pixel weights, and likely
noisy pixel is replaced by recalibrated weighted mean.

One of the other image denoising filters implementing
weighted mean is Three-Values-Weighted Method (TVWM) (Lu
etal., 2016). In the first phase, it uses a variable-size local window
to analyze all extreme pixels. TVWM then classifies non-extreme
pixels and locates them in the maximum, middle, or minimum
groups. Using the weights obtained from distribution ratios of
these groups, non-extreme pixels are weighted. The noisy pixel in
the centre of the window is restored by employing these weighted
values.

Different Applied Median Filter (DAMF) (Erkan et al. 2018)
is one of the state-of-the-art SPN filters. It bases on the median
function and an adaptive window according to whether all pixels
in the considered window are zero or not. Thus, it outperforms
many filters at low-density, middle-density, and high-density
SPN. AWMF performs better than DAMF at high-density SPN
while DAMF does not achieve. DAMF's this deficiency has been
eliminated by operationalizing Cesaro mean (arithmetic mean)
instead of median and increasing adaptive windows, and Adaptive
Cesaro Mean Filter (ACmF) (Enginoglu et al., 2020) has been
suggested. ACmF accepts the weights of the noisy-free pixels as
1. To consider the weights of the noise-free pixels concerning the
centre pixel in the window, a pixel similarity-based Adaptive
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Riesz Mean Filter (ARmF) (Enginoglu et al., 2019) has been
introduced. ARmF avails of the pixel similarity that calculates the
similarity between the considered pixel and centre pixel in the
window. If the pixels’ locations are close to each other, it produces
a value close to 1. ARmF, firstly, constructs a binary matrix
detecting the noisy pixels. It then produces a new pixel value for
each noisy pixel thanks to the pixel similarity of noise-free pixels
to the centre and adaptive windowing concerning whether the
window is equal to a zero matrix or not. In this way, ARmF
achieves better Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity (SSIM) (Wang et al., 2004) results than SMF, AMF,
AWMF, and DAMF. Combining this filtering success of ARmF
with the windowing advantage of AWMEF, a novel high-density-
SPN filter, namely Improved Adaptive Weighted Mean Filter
(IAWMF) (Erkan et al., 2020b), has been offered. As distinct from
ARmF, IAWMF employs Euclidean pixel similarity to weight the
noise-free pixels. Integrating this weighting process into AWME,
IAWMF outperforms AWMF, DAMF, and ARMF at any noise
densities. Utilizing a new median named frequency median, an
Adaptive Frequency Median Filter (AFMF) (Erkan et al., 2020a),
an improved version of AMF, has been developed. AFMF
produces better PSNR and SSIM rates than SMF, AMF, and
DAMF developed through standard median function.

In this study, we aim to avail of the adaptivity condition of
AMF and pixel similarity of ARmF. We develop a high-density
SPN filter, i.e., Different Adaptive Modified Riesz Mean Filter
(DAMRmF). DAMRmMF generates better PSNR and SSIM values
than AFMF, TVWM, UWME, DAMF, AWMF, ACmF, ARmF,
and IAWMF at noise levels ranging from 60% to 90% for 20
traditional test images (Weber, 1997).

The rest of the paper is organized as follows: In Section 2, the
basic definitions and notations needed in the following sections
are presented. In Section 3, a novel SPN filter, DAMRmF, is
proposed. In Section 4, an experimental study is carried out to
demonstrate the proposed filter outperforms the state-of-the-art
filters. Finally, the discussions and concluding remarks related to
DAMRMF are provided for further research.

2. Basic Definitions and Notations

Definition 2.1 Let A := [aij]mxn be an image matrix (IM) such
that a;; is an unsigned integer number and 0 < a;; < 255. Then,
a;; is called a noisy entry of A if a;; = 0 or a;; = 255; otherwise,
a;; is called a regular entry of A.

Definition 2.2 Let A be an IM. Then, A is called a noise image
matrix (NIM) if for some i and j, a;; is a noisy entry of A.
Definition 2.3 Let A := [ai}-]mxnand t € {1,2,...,min{m,n}}.
Then, the matrix [@yslom+2t)xn+ze) Called t-symmetric pad
matrix of A is denoted by 4, _,,,, (or briefly A;) and is defined as
follows:

(473 Aty Agq Atz 0 Qe Atn At(n-t+1)
(513 Qa1 aq (5¥) Ain Ain A1(n-t+1)
Qg aq ag aj; Q1n Ain A1 (n-t+1)
Az azy az; Qaz; Qazn Qazn Az(n-t+1)
Az asy as; as; Qas, QA3zn A3(n-t+1) (1)
Ame  ** Ama Am1 QApz Qg Amn " Am(n-t+1)
Ame  ** Ama Am1 Amz  *° Qmn Amn " Am(n-t+1)
Am-t+1)t" " Am—-t+1)1Am-t+1)1%(m-t+1)2" " Am—-t+1D)nAm—-t+1)n" " Am-t+1)(n—-t+1)
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Definition 2.4 Let A be an NIM. Then, the matrix B := [b;;]
is called a binary matrix of A where

mxn

0, a;;is anoisy entry of A
b;j = Y 2
Y {1. otherwise @
255 87 89
Example 2.1 Let A :==| 45 255 0 |. Then,
100 22 63
255 45 45 255 0 0 2557

87 255 255 87 89 89 87
87 255 255 87 89 89 87
255 45 45 255 0 0 255
22 100 100 22 63 63 22
22 100 100 22 63 63 22
(255 45 45 255 0 0 255l

|
N
Il

Definition 2.5 Let A = [a;;]
matrix
[@a+t-t)G+e-1)

" and k € {1,2, ...,t}. Then, the

mxX

a(i+t—k)(j+t+k)]

Qll

(+O)(+t) : 3)

a(i+t+k)(j+f+k)J(2k+1)X(2k+1)
is called k-approximate matrix of a;; in A, and is denoted by A{‘]
Example 2.2 Let’s consider Example 2.1. Then,

la(i+t+k) (j+t—k)

A%, = |&s3 @ss Gss|=|100 22 63|

100 22 63

Definition 2.6 A matrix with all its entries being zero is called a
zero or null matrix and is denoted by [0].

Definition 2.7 Let 4 := [aif]an' The matrix 4 = [@1,]1x(nn)
consists of all entries (elements) of A and being non-decreasing is
called an entry matrix (EM) of A.

Example 2.3 Let us consider Example 2.2. Then, A3, =

[0 22 22 45 63 63 100 100 255].
Definition 2.8 Let A == [@;y,]1x(nny be @an EM of A := [a;;]
The value

6_163 6_164 665

mxn’

al(m.nﬂ), m.n+1EZ

2 4)

M) + dl(m.n+2)) , M =W/

med(4) = ~
| CHERE ) P

is called a median of A.
Definition 2.9 Let 4 be an IM. Then, the value

1 2
y ):=( )
ps(e. o) = \ T 54 =4

is called pixel similarity between a;; and a,
Definition 2.10 Let A be an NIM. Then the value

Z(s,t)el{‘j ps(ast' a(k+1)(k+1))ast

)

Z(S,t)elikj ps(ase, ager k1))
is called Riesz mean of Af]

Here, If = {(s,t): ay is aregular entry of Af;
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3. Proposed Salt-and-Pepper Filter

In this section, firstly, we present pseudo-codes of AMF
(Hwang & Haddad, 1995) (Algorithm 1) and ARmF (Enginoglu
et al., 2019) (Algorithm 2). AMF operates median filter and
median-based adaptivity condition to remove SPN. ARmF utilizes
pixel similarity-based Riesz mean of the considered window.
Besides, it employs an adaptivity condition that relies on whether
the k-approximate matrix equals a zero matrix or not.

Algorithm 1.
Adaptive Median Filter (AMF)

Input: NIM 4 := [

L) .
Output: Denoised 4 = [a,-j]mxn
Initialize k0 = 9
Compute kaax
For all i and j
For k from 1 to k4
If (min(A’i‘,) < med(4¥)AND med(4) < max(/ﬁ‘]))AND(a,j = min(4%)0R a;; = max(ﬁ’{,))
a;j < med(ﬁ%‘j
Break
End If
End For
End For

Algorithm 2.
Adaptive Riesz Mean Filter (ARmF)

Input: NIM A := [aif]mxn such that min{m,n} > 5

Output: Denoised A := [aij]mxn
Convert A from uint8 form to double form
For t from 5 to 1

Compute the binary matrix B := [ of A

bij] en
Compute /Tt and §t
For all i and j
Ifh;=0
For kfrom 1 to t
If B, # [0]
a;j < Rm(A’i‘]-
Break
End If
End For
End If
End For
End For

Secondly, we define modified Riesz mean (MRm) and propose
Different Adaptive Modified Riesz Mean Filter (DAMRmF)
employing MRm and adaptivity condition of AMF. DAMRmMF
removes SPN operationalizing the weight of the considered pixel
according to the centre pixel in the window. DAMRmF is
designed to be outperformed at high-density SPN.

Definition 2.11 Let A be an NIM. Then the value
Z(s_t)gikj pw(ast: k)ast

Z(S,t)EIlkj pw(ast: k)

MRm(4f;) = (6)

is called Modified Riesz mean of Afj. Here, pw(ay, k) =
1 z k . . ; k

(1+(k+1_5)2+(k+1_t)2) and [} = {(s,0): as is aregular entry of Af;

stand for the pixel weight of ay; in Aé‘j and the set of all indexes

k

of the regular pixels in A4j;, respectively.
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The pixel weight function to be employed with the adaptivity
condition simultaneously is defined to deal with high-density
SPN. It produces different weights and these weights more
efficacious than those of pixel similarity in ARmF. Thus, DARmF
using the pixel weight performs better than the state-of-the-art
filters in high-density SPN for 20 traditional greyscale images.

Finally, we provide the pseudo-code of DAMRmF in Algorithm 3
and its flowchart in Figure 1.

Algorithm 3.
Different Adaptive Modified Riesz Mean Filter (DAMRmMF)

Input: Read an NIM A := [aif]mxn such that min{m,n} > 5

Output: Denoised A = [aij]mxn
Convert A from uint8 form to double form
For t from 5to 1

Compute the binary matrix B = [bi j] of A

mxn
Compute /Tt and §:
For all i and j
Ifb; =0
For kfrom 1 to t
If (0 < med(4¥;) AND med(4l) < 255) AND (a;; = 0 OR q;; = 255)
a;; « MRm(4¥;

Break
End If
End For
End If
End For
End For
l Convert A from uint8 form to double form l
l Compute the binary matrix B := [bjj|mun of A l

l Compute jt and ét l

For alli and j

(0< med(/if,) &
med(AL) < 255)

&
(a;j = 0]a;; = 255)

Convert A from double form to uint8 form

Figure 1. The flowchart of DAMRmF
e-ISSN: 2148-2683

4. Experimental Study

In this part of the study, we compare the proposed DAMRmF with
AFMF (Erkan et al., 2020a), TVWA (Lu et al., 2016), UWMF
(Kandemir et al., 2015), DAMF (Erkan et al., 2018), AWMF
(Zang & Li, 2014), ACmF (Enginoglu et al., 2020), ARmF
(Enginoglu et al., 2019), and IAWMEF (Erkan et al., 2020b) in
terms of PSNR and SSIM (Wang et al., 2004) results.

4.1. Image Quality Assessment Metrics

In this subsection, we present the mathematical notations of
PSNR and SSIM. Let X := [xi j] and Y := [yi]-] be the original
image and restored image, respectively.

PSNR is defined by

2552

where MSE(X,Y) represents the Mean Square Error, and it is
defined by

MSE(X, V) i= — Y 2 8
X, )-—ﬁZZ(xij—yU) (8)
i=1 j=1
SSIM is defined by

Quxpy + C1) + Qoyy + C3)
(Wi +ug +C) + (05 +of +C,)

SSIM(X,Y) = (10)
where uy, Uy, Ox, Oy, and oyy are the average intensities,
standard deviations, and cross-covariance of images X and Y,
respectively. Additionally, C; == (K;L)? and C, := (K,L)? are
two constants such that K; = 0.01, K, = 0.03 and L = 255
for 8-bit grayscale images.

4.2. Simulation Results

In this subsection, we simulate DAMRmMEF, AFMF, TVWA,
UWMF, DAMF, AWMF, ACmF, ARmF, and IAWMEF using 20
traditional test images (Weber, 1997) with 512 x 512 (Lena,
Cameraman, Barbara, Baboon, Peppers, Living Room, Lake,
Plane, Hill, Pirate, Boat, House, Bridge, Elaine, Flintstones,
Flower, Parrot, Dark-Haired Woman, Blonde Woman, and
Einstein). We carry out the simulations by utilizing MATLAB
R2020b and a laptop with I(R) Core(TM) CPU i5-
4200H@2.8GHz and 8 GB RAM.

Table 1 presents the mean PSNR results of the filters for 20
traditional images with high-density SPN. The results show that
DAMRmMF performs better than the others in considered SPN
ratios.

Table 1. Mean PSNR results for 20 traditional images with
different SPN ratios ranging from 60% to 90%

Filters 60% 65% 70% 75% 80% 85% 90% Mean
AFMF 28.15  27.38 2644 2545 2421 2274 20.64  25.00
TVWA 30.09 2938 28.62 2779 2673 2446 19.01 26.58
UWMF 30.00 2931 28.67 2792 27.07 2622 25.08 27.75
DAMF 29.74  29.07 2838 27.62 2676 25.80 2443  27.40
AWMF 30.25 29.54 2879 2797 27.07 26.06 24.74  27.77
ACmF 3036 29.61 2883 2799 27.08 26.07 24.75 27.81
ARmF 30.57  29.79 2897 2810 27.16 26.12 2478  27.93
IAWMF 3073  30.02 29.27 2846 27.55 26.56 2529 2827

DAMRmF 30.74 30.04 29.32 2850 27.64 26.68 2541  28.33
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Secondly, Table 2 offers the mean SSIM results of the filters
for 20 traditional images with high-density SPN. The results
manifest that DAMRmMF outperforms the others in considered
SPN ratios.

Thirdly, Table 3 and 4 are related to PSNR and SSIM results
for several test images with various high SPN ratios, respectively.
DAMRmMF exhibits maximum performance concerning PSNR
and SSIM values. Moreover, DAMRmF outperforms IAWMF
being efficacious for high-density SPN.

Fourthly, Figure 2 offers the visual results of the methods

details. Denoising results of DAMRmMF and the others efficacious.
Moreover, DAMRmF has smooth details and display a better
visual quality than the others.

Fifthly, the PSNR and SSIM graphs are provided in Figure 4
and 5 concerning “House”, “Elaine”, “Blonde Woman”, and
“Lake” images, respectively.

Table 2. Mean SSIM results for 20 traditional images with
different SPN ratios ranging from 60% to 90%
60%  65%  70%  75%  80%  85%  90%

Filters Mean

AFMF 0.8461 0.8259 0.8007 0.7694 0.7296 0.6784 0.6039 0.7506
concerning denoising of the “Lena” image with an SPN ratio of TVWA 0.8882 0.8710 0.8511 0.8271 0.7972 0.7410 0.5671 0.7918
90%. Moreover, Figure 3 presents the visual results of denoising UWMF 0.8855 0.8687 0.8499 0.8278 0.8016 0.7696 0.7245 0.8182
of the proposed method for “Pepper” image with SPN ratios of DAMF 0.8804 0.8635 0.8438 0.8204 0.7926 0.7573 0.7045 0.8089
60%, 70%, 80%, and 90%. Although AFMF removes the noise to AWMF 0.8871 0.8703 0.8506 0.8267 0.7985 0.7629 0.7113 0.8153
a great extent, the denoised image has blurring details, and AFMF ACmF 0.8893 0.8719 0.8518 0.8276 07991 0.7632 0.7115 0.8163
. . ‘ ; ARmF 0.8929 0.8756 0.8554 0.8311 0.8023 0.7660 0.7139 0.8196
has not preserved the edges in “Lena” image. The image denoised IAWMF 0.8952 0.8794 0.8612 0.8390 0.8126 07791 07317 0.8283
by TVWM has black speckle exceedingly as well as it has blurring DAMRmF  0.8959 0.8802 0.8621 0.8400 0.8142 07816 0.7348 0.8298
Table 3. PSNR results of the filters for several traditional images with different SPN ratios ranging from 60% to 90%

Images Filters 60% 65% 70% 75% 80% 85% 90% Mean

AFMF 30.03 29.09 28.11 27.24 25.92 24.29 22.02 26.67

TVWA 32.27 31.47 30.49 29.71 28.48 25.87 19.52 28.26

UWMF 32.09 31.26 30.40 29.74 28.83 27.89 26.60 29.54

© DAMF 31.75 31.04 30.17 29.44 28.49 27.50 26.02 29.20

5 AWMF 32.19 31.41 30.48 29.72 28.75 27.76 26.29 29.51

— ACmF 32.30 31.48 30.52 29.74 28.76 27.76 26.29 29.55

ARmF 32.52 31.67 30.63 29.83 28.85 27.82 26.32 29.66

IAWMF 32.69 31.87 30.98 30.23 29.28 28.25 26.85 30.02

DAMRmF 32.72 3191 31.03 30.29 29.37 28.34 26.95 30.09

AFMF 29.20 28.61 27.74 26.46 24.98 23.16 20.69 25.83

TVWA 31.73 30.99 30.25 29.54 28.24 26.15 20.02 28.13

UWMF 31.31 30.67 30.06 29.44 28.40 27.66 26.51 29.15

5 DAMF 31.13 30.53 29.89 29.17 28.07 27.24 25.85 28.84

§ AWMF 31.71 30.96 30.28 29.53 28.36 27.46 26.13 29.20

~ ACmF 31.78 31.02 30.30 29.54 28.36 27.46 26.14 29.23

ARmF 31.85 31.09 30.35 29.60 28.39 27.49 26.16 29.28

IAWMF 31.94 31.28 30.65 29.96 28.82 27.96 26.71 29.62

DAMRmF 32.13 31.46 30.82 30.11 28.94 28.13 26.86 29.78

AFMF 26.60 25.83 24.68 23.61 22.30 20.99 18.91 23.27

TVWA 28.85 28.13 27.22 26.39 25.44 23.74 18.40 25.45

UWMF 28.77 28.10 27.29 26.52 25.63 24.77 23.55 26.38

o DAMF 28.36 27.69 26.86 26.06 25.21 24.30 22.89 2591

= AWMF 28.78 28.10 27.21 26.36 25.47 24.54 23.11 26.22

- ACmF 28.92 28.19 27.27 26.39 25.49 24.54 23.11 26.28

ARmF 29.13 28.36 27.42 26.51 25.58 24.61 23.16 26.40

IAWMF 29.28 28.60 27.73 26.91 25.99 25.05 23.71 26.75

DAMRmF 29.33 28.68 27.80 26.97 26.05 25.16 23.83 26.83

g AFMF 35.69 34.54 33.05 31.77 30.09 27.48 24.53 31.02

g TVWA 38.28 37.38 36.65 35.23 33.70 28.53 20.47 32.89

5} UWMF 38.07 37.19 36.60 35.56 34.68 33.37 32.20 35.38

_% DAMF 37.56 36.81 36.14 35.12 34.19 32.72 31.08 34.80

2 AWMF 38.27 37.36 36.64 35.54 34.60 33.07 31.74 35.32

= ACmF 38.35 37.44 36.68 35.57 34.61 33.07 31.74 35.35

~ ARmF 38.55 37.60 36.80 35.67 34.69 33.14 31.78 35.46

S IAWMF 38.81 37.93 37.21 36.14 35.21 33.71 32.46 35.92

DAMRmF 38.99 38.08 37.41 36.30 35.41 33.91 32.61 36.10
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Table 4. SSIM results of the filters for several traditional images with different SPN ratios ranging from 60% to 90%

Images Filters 60% 65% 70% 75% 80% 85% 90% Mean
AFMF 0.8857 0.8706 0.8526 0.8285 0.8007 0.7592 0.6946 0.8131

TVWA 0.9140 0.9005 0.8837 0.8647 0.8392 0.7875 0.5970 0.8267

UWMF 0.9108 0.8972 0.8813 0.8645 0.8443 0.8185 0.7812 0.8568

< DAMF 0.9079 0.8949 0.8784 0.8594 0.8375 0.8100 0.7663 0.8506
E) AWMF 0.9131 0.8999 0.8835 0.8646 0.8426 0.8156 0.7731 0.8561
ACmF 0.9144 0.9009 0.8841 0.8650 0.8429 0.8156 0.7731 0.8566

ARmF 0.9173 0.9038 0.8866 0.8674 0.8453 0.8173 0.7745 0.8589

[AWMF 0.9194 0.9071 0.8921 0.8750 0.8555 0.8295 0.7915 0.8671
DAMRmF 0.9205 0.9085 0.8939 0.8771 0.8582 0.8334 0.7951 0.8695

AFMF 0.8178 0.8039 0.7864 0.7613 0.7263 0.6827 0.6093 0.7411

TVWA 0.8627 0.8439 0.8254 0.8037 0.7750 0.7309 0.5785 0.7743

UWMF 0.8442 0.8268 0.8105 0.7922 0.7688 0.7463 0.7163 0.7864

5 DAMF 0.8508 0.8332 0.8151 0.7938 0.7669 0.7396 0.7003 0.7857
§ AWMF 0.8630 0.8441 0.8258 0.8034 0.7751 0.7466 0.7078 0.7951
~ ACmF 0.8635 0.8445 0.8259 0.8035 0.7752 0.7464 0.7078 0.7952
ARmF 0.8613 0.8424 0.8240 0.8021 0.7740 0.7458 0.7079 0.7939

IAWMF 0.8611 0.8445 0.8286 0.8099 0.7851 0.7605 0.7279 0.8025

DAMRmF 0.8681 0.8522 0.8365 0.8179 0.7935 0.7696 0.7362 0.8106

AFMF 0.8353 0.8137 0.7850 0.7491 0.7075 0.6516 0.5746 0.7310

TVWA 0.8777 0.8596 0.8361 0.8108 0.7800 0.7256 0.5556 0.7779

UWMF 0.8670 0.8496 0.8287 0.8064 0.7793 0.7470 0.7009 0.7970

o DAMF 0.8698 0.8520 0.8287 0.8039 0.7739 0.7362 0.6816 0.7923
i AWMF 0.8765 0.8587 0.8355 0.8103 0.7800 0.7425 0.6873 0.7987
- ACmF 0.8789 0.8606 0.8369 0.8112 0.7807 0.7429 0.6875 0.7998
ARmF 0.8801 0.8620 0.8385 0.8130 0.7827 0.7449 0.6899 0.8016

[AWMF 0.8808 0.8647 0.8437 0.8210 0.7933 0.7589 0.7094 0.8103

DAMRmF 0.8840 0.8680 0.8473 0.8240 0.7963 0.7632 0.7135 0.8138

g AFMF 0.9392 0.9294 0.9164 0.9001 0.8790 0.8435 0.7858 0.8848
g TVWA 0.9567 0.9493 0.9410 0.9291 0.9163 0.8695 0.6797 0.8917
S UWMF 0.9543 0.9469 0.9394 0.9289 0.9193 0.9037 0.8832 0.9251
% DAMF 0.9524 0.9452 0.9367 0.9251 0.9140 0.8955 0.8660 0.9193
i AWMF 0.9566 0.9493 0.9409 0.9293 0.9184 0.8999 0.8741 0.9241
= ACmF 0.9572 0.9499 0.9413 0.9296 0.9186 0.9000 0.8742 0.9244
~ ARmF 0.9584 0.9511 0.9425 0.9308 0.9197 0.9010 0.8751 0.9255
8 IAWMF 0.9597 0.9533 0.9459 0.9360 0.9266 0.9104 0.8890 0.9315
DAMRmF 0.9612 0.9548 0.9480 0.9381 0.9296 0.9142 0.8937 0.9342

Noisy Image AFMF - TVWM - UWMF
PSNR/SSIM (5.90/0.0061) PSNR/SSIM (22.02/0.6946) PSNR/SSIM (19.52/0.5970) PSNR/SSIM (26.60/0.7812)

DAMRMF (Proposed)
PSNR/SSIM (26.95/0.7951)

AWMF

ACmF

ARmF IAWMF
PSNR/SSIM (26.29/0.7731)  PSNR/SSIM (26.29/0.7731)  PSNR/SSIM (26.32/0.7745)  PSNR/SSIM (26.85/0.7915)

Figure 2. Image denoising results of the compared filters with SPN level of 90% of the “Lena’ image (512 X 512 pixels).
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SPN ratio 60%
PSNR/SSIM (7.51/0.0179)

Denoising of SPN

PSNR/SSIM (32.13/0.8681)
Figure 3. Image denoising results of the proposed filter with various SPN levels of the “Pepper” image (512 X 512 pixels).

39
37
35

European Journal of Science and Technology

SPN ratio 70%
PSNR/SSIM (6.84/0.133)

Dénoging of SPN
PSNR/SSIM (30.82/0.8365)

PSNR/SSIM (6.24/0.0086)

SPN ratio 80% SPN ratio 90%
PSNR/SSIM (5.75/0.0063)

Deno;sing of SPN ' benoising of SPN
PSNR/SSIM (28.94/0.7935) PSNR/SSIM (26.86/0.7362)
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Figure 4. PSNR Graphs of the several traditional images: (a) House, (b) Elaine, (c) Blonde Woman, and (d) Lake
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Figure 5. SSIM Graphs of the several traditional images: (a) House, (b) Elaine, (c) Blonde Woman, and (d) Lake

Finally, Table 5 shows the mean running times (seconds) of
the methods obtained during the simulations. Even though
IAWMF performs better than the other state-of-the-art filters, it
operates slower than the others. On the other hand, DAMRmF has
an advantage over IAWMF concerning denoising and running
time.

Table 5. Mean running time for 20 traditional images with
different SPN ratios ranging from 60% to 90% (in second)

Filters 60% 65% 70% 75% 80% 85% 90%  Mean
AFMF 8.82 8.57 8.32 8.08 8.79 7.81 7.49 8.27
TVWA 4.22 4.03 3.88 3.82 3.54 3.28 3.19 3.71
UWMF 1.14 1.16 1.62 1.81 1.64 1.98 2.26 1.66
DAMF 0.84 0.87 0.92 1.01 1.12 1.25 1.40 1.06
AWMF 2.90 2.79 2.80 2.84 2.99 3.19 3.47 3.00
ACmF 1.18 1.23 1.34 1.46 1.62 1.86 2.06 1.54
ARmF 0.66 0.69 0.76 0.82 0.94 1.14 1.24 0.89
IAWMF 10.34 10.60 11.97 12.87 14.76 17.53 2223 1433

DAMRmF 3.35 3.82 4.48 5.90 6.50 7.78 10.31 6.02

5. Conclusions and Recommendations

In this study, we defined Modified Riesz Mean replacing the
pixel similarity in Riesz mean with pixel weight function. We then
employed the Modified Riesz Mean and the adaptivity condition
of AMF (Hwang & Haddad, 1995) simultaneously, and developed
an efficacious SPN filter, namely DAMRmF, for high-density
SPN removal. To indicate the denoising success of the proposed
filter, we carried out an experimental study. The simulation results

e-ISSN: 2148-2683

manifest that our DAMRmF outperforms AFMF (Erkan et al.,
2020a), TVWA (Lu et al., 2016), UWMF (Kandemir et al., 2015),
DAMF (Erkan et al., 2018), AWMF (Zang & Li, 2014), ACmF
(Enginoglu et al., 2020), ARmF (Enginoglu et al., 2019), and
IAWMF (Erkan et al., 2020b) according to PSNR and SSIM
(Wang et al., 2004) results for SPN densities varying from 60% to
90%. Besides, visual results herein validated the numerical results
provided in the Simulation Results Subsection. Though there is
very little difference between PSNR and SSIM values of
DAMRmMF and TAWMEF, DAMRmMF runs faster than IAWMEF.
Therefore, DAMRmF outperforms IAWMEF in terms of PSNR
value, SSIM value, and running time, and it can be preferred
instead of TAWMEF. In the experimental study, due to widely using
and knowing of the PSNR quality metric, we utilized this quality
metric even though it may not generate reliable results.

Although DAMRmMF produces better denoising results in
high-density SPN removal than the others, it can be improved
more through new adaptivity condition or pixel weight. On the
other hand, this improvement can be achieved too by including
the noise density of the image in the denoising process. Therefore,
further research should be focused the defining a new pixel weight
function or adaptivity condition.
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