
Avrupa Bilim ve Teknoloji Dergisi

Sayı 23, S. 686-696, Nisan 2021

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

No. 23, pp. 686-696, April 2021

Copyright © 2021 EJOSAT

Research Article

http://dergipark.gov.tr/ejosat 686

The Role of Vulnerable Software Metrics on Software Maintainability

Prediction

Canan Batur Şahin1*

1* Malatya Turgut Özal University, Faculty of Engineering and Natural Sciences, Departmant of Software Engineering, Malatya, Turkey, (ORCID: 0000-0002-2131-

6368), canan.batur@ozal.edu.tr

(First received 11 January 2021 and in final form 6 April 2021)

(DOI: 10.31590/ejosat.858720)

ATIF/REFERENCE: Batur Şahin, C. (2021). The Role of Vulnerable Software Metrics on Software Maintainability

Prediction. European Journal of Science and Technology, (23), 686-696.

Abstract

Software maintainability is among the basic quality features of software engineering. Vulnerability prediction is crucial to protect

software maintainability from attacks for cybersecurity. Hence, managing vulnerability in an accurate way is an important phase for

the efficient prediction of software maintenance. The existing technologies have achieved many good results in vulnerability

detection, but no significant results have been obtained on how effective vulnerability metrics for software maintainability prediction

is. As far as we know, this paper is the first study that applies the Deep Learning-based Symbiotic Immune Network Model to develop

a software maintainability prediction model using vulnerability software metrics. This study proposes a novel methodology capable of

discovering software maintainability metrics in open-source software programs efficiently and accurately. The current study also tries

to identify vulnerability metrics frequently utilized in software maintainability. In this paper, five commonly employed open-source

projects subjected to attacks, such as Mozilla, Linux Kernel, Xen Hypervisor, glibc, and httpd, are used. In the scope of this research,

mentioned five open-source software projects were used as datasets, and they were analyzed with their effect on software

maintainability prediction. The analysis of the software metrics was performed, and the descriptive statistics of the software metrics

were presented. The current research obtained results of software metrics that accurately predicting software maintenance.

Furthermore, the experimental findings confirm the effectiveness of the obtained vulnerability metrics for predicting software

maintainability. Our experimental results claim that the proposed Deep Learning-based Symbiotic Immune Network Model enables

the prediction of software maintainability to be substantially more effective.

Keywords: Deep-Learning, Immune Network Model, Symbiotic Learning, Software Maintainability, Vulnerability metrics.

 Yazılım Sürdürülebilirlik Tahmininde Güvenlik Açığı Yazılım

Metriklerinin Rolü
Öz

Yazılım sürdürülebilirliği, yazılım mühendisliğinin temel kalite özellikleri arasındadır. Güvenlik açığı tahmini, yazılım

sürdürülebilirliğini siber güvenlik saldırılarına karşı korumak için oldukça önemlidir. Bu nedenle, güvenlik açığının doğru bir şekilde

yönetimi, yazılım sürdürülebilirliğinin tahmini için önemli bir aşamadır. Mevcut teknolojiler, güvenlik açığı tespitinde pek çok iyi

sonuç elde etmişlerdir, ancak yazılım sürdürülebilirlik tahmini için güvenlik açığı metriklerinin ne kadar etkili olduğu konusunda

önemli sonuçlar elde edilmemiştir. Bildiğimiz kadarıyla, bu çalışma, güvenlik açığı yazılım metriklerini kullanarak bir yazılım

sürdürülebilirlik tahmin modeli geliştirmek için Derin Öğrenme tabanlı Simbiyotik Bağışıklık Ağı Modelini uygulayan ilk çalışmadır.

Bu çalışma, açık kaynaklı yazılım projelerindeki yazılım sürdürülebilirlik metriklerini verimli ve doğru bir şekilde keşfedebilen yeni

bir metodoloji önermektedir. Mevcut çalışma aynı zamanda yazılım sürdürülebilirliğinde sıklıkla kullanılan güvenlik açığı

metriklerini belirlemeye çalışmaktadır. Bu çalışmada, Mozilla, Linux Kernel, Xen Hypervisor, glibc ve httpd gibi saldırılara maruz

kalan, yaygın olarak kullanılan beş açık kaynaklı proje kullanılmıştır. Bu çalışma kapsamında, söz konusu beş açık kaynaklı yazılım

projesi veri kümesi olarak kullanılmış ve yazılım sürdürülebilirlik tahminine etkileri ile analiz edilmiştir. Yazılım metriklerinin analizi

gerçekleştirilmiş ve yazılım metriklerinin tanımlayıcı istatistikleri sunulmuştur. Mevcut araştırma, yazılım bakımını doğru bir şekilde

tahmin eden yazılım metriklerinin sonuçlarını elde etmiştir. Aynı zamanda, deneysel sonuçlar, elde edilen güvenlik açığı metriklerinin

yazılım sürdürülebilirliğini tahmin etmede etkinliğini doğrulamaktadır. Deneysel sonuçlar, önerilen Derin Öğrenme tabanlı

Simbiyotik Bağışıklık Ağı Modelinin, yazılım sürdürülebilirliği tahmininin önemli ölçüde daha etkili olmasını sağladığını

kanıtlamaktadır.

Anahtar Kelimeler: Derin Öğrenme, İmmün Ağ Modeli, Simbiyotik Öğrenme, Yazılım Sürdürülebilirliği, Güvenlik açığı metrikleri.

* Corresponding Author: canan.batur@ozal.edu.tr

http://dergipark.gov.tr/ejosat
mailto:xxxx@xxx.xx.xx

European Journal of Science and Technology

e-ISSN: 2148-2683 687

1. Introduction

It is possible to define software maintainability as the

degree of easiness at which the modification of a software

system or component can be performed for its correction,

improvement, or adaption to its environment. Software

maintainability has four major subcategories, such as

changeability, analysability, testability, and stability.

There is a high level of correlation between the software

metrics and maintainability of software, in other words, it is

possible to develop models for predicting maintainability by

utilizing software metrics. Furthermore, in object-oriented

software, maintainability constitutes an essential quality feature

that helps in enhancing the design and coding of software.

Object-oriented software metrics predict software

maintainability in the best way. Software metrics calculate

different software features describing the physical and functional

properties of a process, component, or project. Moreover,

software metrics help developers discover and fix mistakes.

Vulnerability discovery metrics have considerable potential to

shed light on the software maintainability failures that may have

caused introducing vulnerabilities. In the present study, software

vulnerability metrics are utilized as an indicator of the

maintainability prediction model.

Vulnerability detection play a significant part in software

security and quality [1]. This paper discussed the subject of

detecting the correlation of the most relevant vulnerability

metrics in software maintainability by utilizing deep learning.

Object-oriented metrics were analyzed, and their effect on open-

source software maintainability was also investigated. This

study's goal is to obtain a relationship between vulnerability

metrics and software maintainability. The relationship is

determined by a deep learning-based symbiotic immune network

model. Generally, Deep learning applied based on the neural

network architecture [2]. In this paper, the learning mechanism

from vulnerability metrics is demonstrated and modeled for

predicting software maintainability. Hence, a symbiotic

mechanism is employed.

There is a number of software maintainability prediction

techniques that are combined with popular learning-based

approaches. In [3], deep learning was applied for predicting

software maintainability metrics on many datasets. The said

study obtained findings in the form of metrics that might be

utilized for predicting software maintenance, and the suggested

deep learning model was superior to all other methods analyzed.

In [4], a suitable model was developed using a hybrid neural

network to predict the maintainability of object-oriented

software by utilizing class-level metrics. The findings

demonstrated that the model developed by the suggested hybrid

approach yielded better results in comparison with the related

works. In [5], which used deep learning to detect vulnerabilities

at the slice level for the first time, it was indicated that other

studies on the usage of deep learning to detect vulnerabilities

were at a coarser granularity (e.g., function level). VulDeePecker

shows how feasible the use of deep learning for vulnerability

detection is. In [6], the feasibility and advantages of

implementing deep learning techniques to analyze and detect

software vulnerabilities were investigated. Furthermore, this

paper addressed different vulnerability databases/resources and a

number of the recent successful deep learning applications in the

prediction of vulnerabilities in the software. In [7], a model was

created for developing stable associative memory, which can

solve robustness and optimization tasks. The LSTM was utilized

to better understand the mechanisms containing the "remember"

attribute of the immunological behavior of the immune response.

The principal contributions of the current study are given

below.

• This paper is the first model that predicts software

maintainability using vulnerable software metrics with the deep

learning-based symbiotic immune network model. This makes

the proposed methodology an original approach to effectively

detect and analyze software maintainability prediction.

• This paper introduces a novel framework trained by

Long Short-Term-Memory (LSTM) and Gated Recurrent Unit

(GRU) Recurrent Neural Networks (RNNs) for learning deep

correlated vulnerable software metrics to detect software

maintainability. The selected object-oriented metrics are utilized

in predicting software maintainability.

• In the current research, we accept determining the

correlated software metrics from the symbiotic immune network

model as a combinatorial optimization problem. Therefore, we

propose a novel methodology called the Symbiotic Immune

Network.

The remaining part of this paper is organized in the

following way. The preliminaries are explained in Part 2. Part 3

contains a description of the methods. The proposed method is

presented in Part 4. The experimental results and discussion are

shown in Part 5. The conclusion and future studies are presented

in Part 6.

2. Preliminaries

2.1. Vulnerability Metrics for Software

Maintainability

It is crucial and difficult to maintain software security

during the whole software life cycle. Vulnerabilities of software

systems can lead to various problems, such as deadlock,

information loss, or system failure. Nowadays, it is becoming

more challenging to manage software security due to its

increasing complexity and diversity. During the establishment of

a novel software system, software maintainability should be

taken into account together with secure software design

principles and secure software development life cycles.

Researchers have recently utilized vulnerability prediction

approaches based on software metrics for the detection of

vulnerable codes early for software maintainability.

2.2. Deep Learning for Software Maintainability

Prediction Models

Software maintainability prediction models have been

studied to help organizations with utilizing costs, allocating

resources, and acquiring an accurate management plan and

efficient maintenance process. Nevertheless, it is difficult to

predict software maintainability, and accurate prediction models

are needed for this. Deep learning approaches can discover latent

features that a human expert may never think of including,

which leads to the significant expansion of the feature search

space. This means understanding the vulnerability metrics for

maintainability prediction models so that deep learning-based

detection systems can learn from these metrics.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 688

2.3. Immune Network Theory

Being a metaphor for different aspects of the natural

immune system, the artificial immune network represents a

network of connected recognition cells that learn using feedback

mechanisms. The fundamental idea of immune networks is that,

in the case of the recognition of invasive antigens by antibodies,

various antibodies make up a dynamic network by interacting

between themselves. The immune system represents an

interacting network of lymphocytes and molecules with variable

(V) regions. Thus, the immune system is regarded as a network

having the components that are connected by V-V interactions.

The structure of the immune network represented in figure 1.

Figure 1: Structure of immune networks [8].

3. Methods

3.1. Deep-Learning Based Classifiers

Deep learning (DL) represents a branch of machine learning

models. Its ability to extract hierarchical representations from

input data as a result of the establishment of deep neural

networks having multiple layers of nonlinear transformations

characterizes deep learning.

3.2. Recurrent Neural Network

Recurrent neural networks (RNNs) can memorize arbitrary

length sequences of input patterns by establishing relations

between units. The transition function at every time step (t) takes

the current time information, which is denoted as Xt, and h(t-1)

is the previously hidden output. The updating of the current

hidden output is performed using Equation (1):

ht= H (Xt+h(t-1)) (1)

In Equation (1), H refers to a nonlinear and differentiable

transformation function. When the complete sequence is

processed, the hidden output at the final time step, in other

words, ht, may be considered as a vector of sequential data. The

addition of the supervised learning layer on top is performed

with the aim of mapping the acquired representation ht to

targets, and it is possible to train the model via backpropagation

through time.

3.3. Long-Short-Term-Memory (LSTM)

LSTM networks represent one of the most effective solutions to

a sequence of prediction problems because of the recognizing

patterns in data sequences. Since LSTM networks have a

particular type of memory, they can selectively remember

patterns for a long time. They represent quite a reasonable

approach to predict the period with the unknown long delays that

occur between important events. The LSTM memory block's

structure is composed of three gates and a self-recurrent

connection.

Figure 2: Architecture of the LSTM Recurrent Neural Network

[9].

Ct refers to the memory amount of LSTM unit at time t. The

output of the LSTM at time t is represented by the ht. LSTM

unit, t denotes the output gate managing the memory content

exposure.  denotes the sigmoid function, Ĉt refers to a novel

memory content of the memory unit, which is updated by partly

forgetting the current memory and adding the novel memory

content to Ct.

The current memory forgetting gate is modulated by ft. The

addition degree of the new memory content to the memory cell

is modulated by an input gate it.

3.4. Gated Recurrent Unit (GRU)

 GRU represents an improved version of standard recurrent

neural networks (RNNs) [12]. GRU networks have two gates: a

reset gate (r), which performs the adjustment of incorporating

novel input with the previous memory, and an update gate (z),

which performs the control of preserving the previous memory.

European Journal of Science and Technology

e-ISSN: 2148-2683 689

Figure 3: Architecture of the GRU Recurrent Neural Network

[9].

The update gate helps the model determine the amount of

the previous information (from past time steps). Identically, it is

applicable to ht-1, which holds the information for the past t-1

units. A sigmoid activation function is employed to squash the

outcome between 0 and 1. The reset gate is utilized so that the

model can make a decision on the past information amount

necessary to forget. The update gate determines what it is

required to collect from the current memory content ĥt and what

from the past steps ht-1, final memory at the present time step.

4. Proposed Method

The proposed model is a computational modeling paradigm that

depends on the immense detection and prediction capability of

immune neural networks. We construct a deep learning-based

symbiotic immune memory network model that discovers

software maintainability from vulnerability metrics with

characteristics that are more prone to software security. This

makes this methodology a novel approach toward the effective

detection and analysis of software maintainability. Thus, the

deep learning-based symbiotic immune network model can

adaptively learn useful maintainability metrics.

4.1. The Proposed Deep-Learning Based Symbiotic

Immune Network Model

In the proposed framework, the structure of the immune network

is utilized to identify the metrics of a software maintainability

candidate solution. In the current study, we suggest a new cell

interaction model in a symbiotic manner in which antibodies

interact with cells. We investigate how to utilize a deep neural

network (DNN) and immune network to predict software

maintainability based on vulnerability software metrics. The

symbiotic immune network displays an Eigen-behavior resulting

from cell-cell interactions of antibodies in (V) regions within the

immune system as a co-evolution system. The immune network-

based symbiotic mechanism plays a major role in an interacting

network of lymphocytes and molecules having variable (V)

regions. The co-evolution of the populations of heterogeneous

antibodies affect the formation of idiotypic networks. Thus,

networks are updated in dynamic progress by integrating the

novel memorized auto-reactive cells in the network. Therefore,

the captured long context correlations, in which the dependent

software metrics are in V regions, are obtained and used to

predict the software maintainability.

f(Abi,Agj)=1/(1+∥Abi,Abj∥) (2)

Each data was assumed to be denoted as follows:

x = {x1, x2, . . ., xN}, where N refers to the length of the

training data (vulnerable software metrics).

The fitness function in Equation (2) is used to reveal the quality

of every interacting antibody in novel deep-symbiotic memory.

We use the Euclidean distance of two software metric (SM)

vectors to measure their similarity. Each SM serves as an

antibody.

In the proposed framework, an enhanced symbiotic immune

network based on deep learning methods is proposed. Each

LSTM and GRU recurrent neural network (RNN) model uses its

functions in the graph as a transformation/aggregation function.

For each deep learning model, neurons aggregate information

from their neighbors using a symbiotic immune neural network.

The meaning of the symbols in the pseudocode of proposed

model is as follows: Ab referes to the antibodies in repertoire, S

refers to the similarity matrix between every pair of antibody,

C* denotes the vector that contains the affinity between each

element Abj, dj denotes the vector that contains the affinity

between each element from the set C* with other Ab, ζ refers to

the percentage of the mature antibodies that should be chosen,

Mj is the memory clone for antibody Abj (that remains from the

clonal suppression process), Mj* is the resultant clonal memory,

σd is the natural death threshold, σs refers to the suppression

threshold, and σcut refers to the cutting threshold. The Euclidean

distance between the antibodies, capable of forming the affinity

matrix, expresses Dk,j. In Immune-network-model, matrix Ab

antibody pool is presented as software metrics to the immune

network, and matrix S identifies the connections among more

prone vulnerable antibodies.

For the detection of code-clones, software metrics are utilized

with the aim of pooling the nodes into a network-level vector

representation for every immune network in a separate manner.

Then, the quantification of the affinity between the interactions

of an antibody and other antibodies is performed by the

measurement of the similarity degree (affinity). The affinity is

employed for the detection of behavioral equivalence between

SM vectors, which is then generalized to the vulnerability.

In the proposed framework, an enhanced immune network

methodology based on DNN methods is proposed. Each LSTM

and GRU recurrent neural network (RNN) model uses its

functions in the graph as a transformation/aggregation function.

For each RNN model, nodes aggregate information from their

neighbors using an immune neural network.

𝑆𝑌𝑀𝐵_𝑀 = 𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙(ℎ𝑖
𝑡 , ℎ𝑗

𝑡) ∀i , j ϵ E (3)

𝑆𝑌𝑀𝐵_𝑀∗ = 𝑓𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑆𝑌𝑀𝐵_𝑀𝑗𝑖 |∀i , j) (4)

ℎ𝑗
(𝑡+1)

= 𝑓𝑢𝑝𝑑𝑎𝑡𝑒(ℎ𝑗
𝑡 , 𝑆𝑌𝑀𝐵_𝑀∗) (5)

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 690

 Procedure: Deep-Symbiotic Immune Network

Model

Input: Set of vectors of vulnerable code-metrics

Output: The list of software metrics more prone to have security

vulnerabilities

Step 1: {Initialize Antibody Pool (Software metrics)}

Step 2: [Train] {1...N} (Input Size)

Step 3: For each iteration, do:

Step 4: For each antibody Abj, j = 1,...,N, (Abj ∈ Ab), do:

Step 5: Determine fitness (affinity) of each antibodies in

population P

Step 6: From C*, re-select ζ% of the antibodies with highest dk,j

and put them into a matrix Mj of symbiotic memory S;

Step 7: SYMB_M=CreateDNNSymbioticMemory(Mj, t,State_id)

Step 8: Co-evaluation of interacting antibodies of SYMB_M in

dynamic V region

Step 8: Apoptosis: eliminate all the memory clones from

SYM_M whose affinity Dk,j > σd:

Step 9: Determine the affinity Si,k among the

DNNclonalmemory. Si,k=|| SYMB_M j,i − SYMB_M j,k ||, ∀i ,k

Step 10: Clonal suppression: eliminate those DNN memory

clones whose si,k < σs:

Step 11: Concatenate the total antibody memory matrix with the

resultant DNN clonal memory SYMB_Mj * for Abj: Ab{m} ←

[Ab{m}; SYMB_M j *]

Step 12: DNNM* UpdateDNNClonalMemory (SYMB_M j,

t,State_id)

Step 13: State_id  State_id+1

Step 14: Determine the affinity among all the DNN clonal

memory SYMB_M * antibodies from Ab{m}: Si,k=|| Abi{m} –

Abk{m} ||, ∀i ,k

Step 15: Network suppression: eliminate all the antibodies such

that Si,k < σs:

Step 16: END For

Step 17: Build the total antibody matrix Ab← [Ab{m}]

Step 18: Add list of more prone security metrics

Step 19: END For

Figure 4: Pseudocode of proposed model.

Where finitial represents the initial function, whereas fupdate

represents the antibody neurons update function. faggregate

denotes an aggregation function, use as a direct sum. Equations

(3) and (4) can be regarded as aggregators in which every

antibody node collects information from its neighbors. Equation

(5) represents an updater, updating the hidden state of all nodes.

The structure of Sub-Deep-Symbiotic Immune Network and sub-

network representation for correlated metrics presented in Figure

5-6, respectively. Figure 7 shows the schema of the proposed

Deep-learning based symbiotic immune network model.

 [

ℎ1

ℎ2

.
ℎ𝑁

]

 [

ℎ1

ℎ2

.
ℎ𝑁

]

[

ℎ1

ℎ2

.
ℎ𝑁

]

 [

ℎ1

ℎ2

.
ℎ𝑁

] [

ℎ1

ℎ2

.
ℎ𝑁

]

 [

ℎ1

ℎ2

.
ℎ𝑁

] [

ℎ1

ℎ2

.
ℎ𝑁

]

 [

ℎ1

ℎ2

.
ℎ𝑁

]

Figure 5: Structure of sub deep-symbiotic immune network.

Figure 6: Sub-network representation for correlated metrics.

 Sub- deep network with hidden
states

European Journal of Science and Technology

e-ISSN: 2148-2683 691

5. Experimental Results and Discussion

In the current part, experiments are conducted to assess the

suggested methods. For the evaluation, we consider five

commonly employed open-source projects subjected to attacks,

such as Mozilla, Linux Kernel, Xen Hypervisor, glibc, and httpd

(https://eden.dei.uc.pt/~nmsa/metrics-dataset/).

In the present research, we introduce an approach toward

utilizing vulnerability discovery metrics to ensure insightful

feedback for software maintainability. We identified a lot of

potential metric-set combinations to take a decision on the

correlation of vulnerable metric sets for software maintainability.

The findings demonstrate that it is possible to use the dataset for

the purpose of distinguishing which metrics are more prone to

detect security vulnerabilities. The best vulnerable software

metric sets for the suggested LSTM-symbiotic network and

GRU-symbiotic network are shown in Table 1 and Table 2,

respectively. The random forest was employed as a classifier.

The findings showed that using particular software metrics,

including Max cyclomatic for the LSTM-symbiotic network and

percent lack of cohesion for the GRU-symbiotic network, it was

possible to achieve a high accuracy rate above 98% in software

maintainability metrics prediction.

Figure 8-17 plots the Root Mean Square Error (RMSE)-

measure of Deep Learning based Symbiotic Immune Network

and with respect to the six-software metrics with different

number of hidden layers. We observe that the generally RMSE-

measure of the six-software metrics achieve good results at 0-5

layers, and the RMSE-measure of most of these 6-software

metrics increases when the number of layers is great. To

empirically test the effect of the number of hidden layers, we

assessed and compared the model results for each project based

on six software metrics. The RMSE was computed to analyze

the impact of which software metrics useful for robust software

maintainability prediction. As shown in Figures 8-12, the

proposed LSTM-Symbiotic Immune Network achived more

successful results respectively for encapsulation, inheritance,

coupling, polymorphism, complexity and size metrics in

detecting httpd, glibc, mozilla, linux kernel and xen hypervisor

projects, respectively. As the results are depicted in figures 13-

17, the proposed GRU- LSTM-Symbiotic Immune Network

outperforms encapsulation, size, inheritance, complexity,

coupling and polymorphism metrics for httpd, glibc, Linux

kernel, Mozilla and Xen Hypervisor projects respectively, since

it produces the lowest change in RMSE.

 Figure 7: The schema of the proposed Deep-learning-based symbiotic Immune network model.

Table 1. Accuracy of Best Vulnerable metrics for software maintainability based on LSTM-Symbiotic Immune Network

Metric-Set
Linux Kernel

(%)

Mozilla (%) Xen

Hypervisor (%)

Httpd (%) Glibc (%)

Inheritance tree 90.4 96.7 92.1 97.8 91.6

Max Nesting 91.7 89.5 97.4 96.2 93.5

CountLine 95.3 93.6 95.5 95.8 92.5

Max Cyclomatic 96.8 94.7 94.6 98.6 92.7

Count Path 92.4 94.1 95.7 94.5 94.3

Percent Lack of Cohesion 95.8 93.8 94 97.2 92.1

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 692

Table 2. Accuracy of Best Vulnerable metrics for software maintainability based on GRU-Symbiotic Immune Network

Metric-Set
Linux Kernel

(%)

Mozilla (%) Xen

Hypervisor (%)

Httpd (%) Glibc (%)

Inheritance tree 91.2 95.8 93.6 98.4 92

Max Nesting 93.8 95.9 94.9 97.3 95.3

CountLine 94.1 97.5 96.3 95.9 93.7

Max Cyclomatic 94.6 96.3 96.2 98.1 94.1

Count Path 95.9 95.2 93.6 97.3 96.8

Percent Lack of Cohesion 93.8 97.2 96.3 98.7 93.2

Figure 8. The relationship between number of hidden layers and root mean square error of different software metric categories for

LSTM-Symbiotic Immune Network – Linux Kernel Project

Figure 9. The relationship between number of hidden layers and root mean square error of different software metric categories for

LSTM- Symbiotic Immune Network – Mozilla Project

0

0,1

0,2

0,3

0,4

0,5

0 5 10 15 20 25

R
M

SE

HİDDEN LAYERS

Inheritance Coupling Polymorphism Complexity Size Encapsulation

0

0,1

0,2

0,3

0,4

0,5

0 5 10 15 20 25

R
M

SE

HİDDEN LAYERS

Inheritance Coupling Polymorphism Complexity Size Encapsulation

European Journal of Science and Technology

e-ISSN: 2148-2683 693

Figure 10. The relationship between number of hidden layers and root mean square error of different software metric categories for

LSTM- Symbiotic Immune Network – Xen Hypervisor project

Figure 11. The relationship between number of hidden layers and root mean square error of different software metric categories for

LSTM- Symbiotic Immune Network – Httpd Project

Figure 12. The relationship between number of hidden layers and root mean square error of different software metric categories for

LSTM- Symbiotic Immune Network – Glibc Project

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

0,5

0 5 10 15 20 25

R
M

SE

HİDDEN LAYERS

Inheritance Coupling Polymorphism Complexity Size Encapsulation

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 5 10 15 20 25

R
M

SE

HİDDEN LAYERS

Inheritance Coupling Polymorphism Complexity Size Encapsulation

0

0,1

0,2

0,3

0,4

0,5

0 5 10 15 20 25

R
M

SE

HİDDEN LAYERS

Inheritance Coupling Polymorphism Complexity Size Encapsulation

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 694

Figure 13. The relationship between number of hidden layers and root mean square error of different software metric categories for

GRU- Symbiotic Immune Network – Linux-Kernel project

Figure 14. The relationship between number of hidden layers and root mean square error of different software metric categories for

GRU- Symbiotic Immune Network – Mozilla Project

Figure 15. The relationship between number of hidden layers and root mean square error of different software metric categories for

GRU- Symbiotic Immune Network – Xen Hypervisor Project

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 5 10 15 20 25

R
M

SE

HİDDEN LAYERS

Inheritance Coupling Polymorphism Complexity Size Encapsulation

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 5 10 15 20 25

R
M

SE

HİDDEN LAYERS

Inheritance Coupling Polymorphism Complexity Size Encapsulation

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

0 5 10 15 20 25

R
M

SE

HİDDEN LAYERS

Inheritance Coupling Polymorphism Complexity Size Encapsulation

European Journal of Science and Technology

e-ISSN: 2148-2683 695

Figure 16. The relationship between number of hidden layers and root mean square error of different software metric categories for

GRU- Symbiotic Immune Network – Httpd project

Figure 17. The relationship between number of hidden layers and root mean square error of different software metric categories for

GRU- Symbiotic Immune Network – Glibc Project.

6. Conclusion

Software maintenance represents a costly activity

consuming a significant part of the total project's cost [14].

Because it is very challenging to track the maintenance behavior

of software, it becomes difficult to predict cost and the risk

associated. Using maintainability, it is possible to predict what

changes or failures can emerge in software following its

deployment. In the present study, we suggest a novel

methodology for software maintainability prediction and

implement the said method on vulnerability metrics. The

proposed method was used for identifying the important

vulnerable software metrics that help enhance the accuracy of

software maintainability. The current research suggests and

builds a new framework symbiotic immune network on the basis

of deep learning in order to improve robustness to predict

software maintainability.

The paper demonstrated that utilizing software metrics with

the symbiotic immune neural network was a good method of

software maintainability analysis and prediction. In conclusion,

the findings demonstrate that vulnerable metrics have major

effects on software maintainability, and it is possible that they

will have other vulnerabilities hereafter. The software

maintainability in the symbiotic neural network will be

discovered by supplementary improvement approaches in the

future.

5. Acknowledge

 This article does not contain any studies with human

participants performed by any of the authors.

References

[1] Batur Şahin C., Batur Dinler Ö., Abuagilah L. (2021).

Prediction of software vulnerability-based deep symbiotic

genetic algorithms: Phenotyping of dominant-features,

Applied Intelligence, doi: 10.1007/s10489-021-02324-3.

[2] Batur Dinler, Ö , Batur Şahin, C . (2021). Prediction of

Phishing Web Sites with Deep Learning Using WEKA

Environment . European Journal of Technique ,35-41 . DOI:

10.31590/ejosat.901465

[3]Jha S. et. al., (2020). Deep Learning Approach for Software

Maintainability Metrics Prediction, IEEE Access, doi:

10.1109/ACCESS.2019.2913349.

0

0,05

0,1

0,15

0,2

0,25

0,3

0 5 10 15 20 25

R
M

SE

HİDDEN LAYERS

Inheritance Coupling Polymorphism Complexity Size Encapsulation

0

0,05

0,1

0,15

0,2

0,25

0,3

0 5 10 15 20 25

R
M

SE

HİDDEN LAYERS

Inheritance Coupling Polymorphism Complexity Size Encapsulation

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 696

[4] Kumar L., Lal S., and Murthy L.B., (2019). Estimation of

maintainability parameters for object-oriented software using

hybrid neural network and class level metrics, Int J Syst

Assur Eng Manag 10, https://doi.org/10.1007/s13198-019-

00853-2, 1234–1264.

[5] Li Z., et al., (2019). VulDeePecker: A Deep Learning-Based

System for Vulnerability Detection, Cryptography and

Security, Doi: 10.14722/ndss.2018.23158.

[6] Singh S.K., Chaturvedi A., (2020). Applying Deep Learning

for Discovery and Analysis of Software Vulnerabilities: A

Brief Survey, Soft Computing: Theories and Applications.

Advances in Intelligent Systems and Computing, vol 1154.

Springer, Singapore. https://doi.org/10.1007/978-981-15-

4032-5_59.

[7] Şahín C. B., and Dírí B., (2019). Robust Feature Selection

with LSTM Recurrent Neural Networks for Artificial

Immune Recognition System, in IEEE Access, vol. 7, pp.

24165-24178, doi: 10.1109/ACCESS.2019.2900118.

[8] Tsankova D., et al., (2007). Modeling Cancer Outcome

Prediction by aiNet: Discrete Artificial Immune Network,

Proceedings of the 15th Mediterranean Conference on

Control&Automation, Jully 27-29, Athens, Greece.

[9] Alom M. Z., Taha T. M., et al., (2019). A state-of-the-art

survey on deep learning theory and architectures.

Electronics, 8, 292; doi:10.3390/electronics8030292.

[10] Dai H., and Li C., (2009). Immune Network Theory Based

Artificial Immune System and Its Application, Second

International Conference on Intelligent Networks and

Intelligent Systems.

[11] Alsolai H., Roper M., (2020). A systematic literature review

of machine learning techniques for software maintainability

prediction. Information and Software Technology, doi:

10.1016/j.infsof.2019.106214.

[12] Ardito L., Coppola R., Barbato L., and Verga D., (2020). A

Tool-Based Perspective on Software Code Maintainability

Metrics: A Systematic Literature Review,

https://doi.org/10.1155/2020/8840389.

[13] Munaiah N,. and Meneely A., (2019). Data-Driven Insights

from Vulnerability Discovery Metrics, IEEE/ACM Joint 4th

International Workshop on Rapid Continuous Software

Engineering and 1st International Workshop on Data-Driven

Decisions, Experimentation and Evolution (RCoSE/DDrEE),

doi: 10.1109/RCoSE/DDrEE.2019.00008.

[14] Kalıpsız, O , Cihan, P . (2016). Öğrenci Proje Anketlerini

Sınıflandırmada En İyi Algoritmanın Belirlenmesi. Türkiye

Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi, 8

(1), 41-49.

[15] Mishra S., and Sharma A., (2015). Maintainability

prediction of object-oriented software by using adaptive

network based fuzzy system technique. International Journal

of Computer Applications, 119(9): 1154-1168.

[16] Li Z., Zou D., Xu S., Jin H., Zhu Y., and Chen Z., (2018).

SySeVR: A framework for using deep learning to detect

software vulnerabilities. ArXiv:1807.06756. [Online].

Available: https://arxiv.org/abs/1807.06756.

[17] Liu S., et. al., (2020). CD-VulD: Cross-Domain

Vulnerability Discovery based on Deep Domain Adaptation,

IEEE Transactions on Dependable and Secure Computing,

Doi:10.1109/TDSC.2020.2984505. pp: (99): 1-1.

[18] Li Y., Tarlow D., Brockschmidt M., and Zemel R. S.,

(2015). Gated graph sequence neural networks. CoRR,

abs/1511.05493.

[19] Zagane M., and Abdi M. K., (2019). Evaluating and

comparing size, complexity and coupling metrics as Web

applications vulnerabilities predictors, Int. J. Inf. Technol.

Comput. Sci., vol. 11, no. 7, pp. 35–42, Jul.

