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Abstract 

Software maintainability is among the basic quality features of software engineering. Vulnerability prediction is crucial to protect 

software maintainability from attacks for cybersecurity. Hence, managing vulnerability in an accurate way is an important phase for 

the efficient prediction of software maintenance. The existing technologies have achieved many good results in vulnerability 

detection, but no significant results have been obtained on how effective vulnerability metrics for software maintainability prediction 

is. As far as we know, this paper is the first study that applies the Deep Learning-based Symbiotic Immune Network Model to develop 

a software maintainability prediction model using vulnerability software metrics. This study proposes a novel methodology capable of 

discovering software maintainability metrics in open-source software programs efficiently and accurately.  The current study also tries 

to identify vulnerability metrics frequently utilized in software maintainability. In this paper, five commonly employed open-source 

projects subjected to attacks, such as Mozilla, Linux Kernel, Xen Hypervisor, glibc, and httpd, are used.  In the scope of this research, 

mentioned five open-source software projects were used as datasets, and they were analyzed with their effect on software 

maintainability prediction. The analysis of the software metrics was performed, and the descriptive statistics of the software metrics 

were presented.  The current research obtained results of software metrics that accurately predicting software maintenance.  

Furthermore, the experimental findings confirm the effectiveness of the obtained vulnerability metrics for predicting software 

maintainability. Our experimental results claim that the proposed Deep Learning-based Symbiotic Immune Network Model enables 

the prediction of software maintainability to be substantially more effective.  

Keywords: Deep-Learning, Immune Network Model, Symbiotic Learning, Software Maintainability, Vulnerability metrics. 

 Yazılım Sürdürülebilirlik Tahmininde Güvenlik Açığı Yazılım 

Metriklerinin Rolü   
Öz 

Yazılım sürdürülebilirliği, yazılım mühendisliğinin temel kalite özellikleri arasındadır. Güvenlik açığı tahmini, yazılım 

sürdürülebilirliğini siber güvenlik saldırılarına karşı korumak için oldukça önemlidir. Bu nedenle, güvenlik açığının doğru bir şekilde 

yönetimi, yazılım sürdürülebilirliğinin tahmini için önemli bir aşamadır. Mevcut teknolojiler, güvenlik açığı tespitinde pek çok iyi 

sonuç elde etmişlerdir, ancak yazılım sürdürülebilirlik tahmini için güvenlik açığı metriklerinin ne kadar etkili olduğu konusunda 

önemli sonuçlar elde edilmemiştir. Bildiğimiz kadarıyla, bu çalışma, güvenlik açığı yazılım metriklerini kullanarak bir yazılım 

sürdürülebilirlik tahmin modeli geliştirmek için Derin Öğrenme tabanlı Simbiyotik Bağışıklık Ağı Modelini uygulayan ilk çalışmadır. 

Bu çalışma, açık kaynaklı yazılım projelerindeki yazılım sürdürülebilirlik metriklerini verimli ve doğru bir şekilde keşfedebilen yeni 

bir metodoloji önermektedir. Mevcut çalışma aynı zamanda yazılım sürdürülebilirliğinde sıklıkla kullanılan güvenlik açığı 

metriklerini belirlemeye çalışmaktadır. Bu çalışmada, Mozilla, Linux Kernel, Xen Hypervisor, glibc ve httpd gibi saldırılara maruz 

kalan, yaygın olarak kullanılan beş açık kaynaklı proje kullanılmıştır. Bu çalışma kapsamında, söz konusu beş açık kaynaklı yazılım 

projesi veri kümesi olarak kullanılmış ve yazılım sürdürülebilirlik tahminine etkileri ile analiz edilmiştir. Yazılım metriklerinin analizi 

gerçekleştirilmiş ve yazılım metriklerinin tanımlayıcı istatistikleri sunulmuştur. Mevcut araştırma, yazılım bakımını doğru bir şekilde 

tahmin eden yazılım metriklerinin sonuçlarını elde etmiştir. Aynı zamanda, deneysel sonuçlar, elde edilen güvenlik açığı metriklerinin 

yazılım sürdürülebilirliğini tahmin etmede etkinliğini doğrulamaktadır. Deneysel sonuçlar, önerilen Derin Öğrenme tabanlı 

Simbiyotik Bağışıklık Ağı Modelinin, yazılım sürdürülebilirliği tahmininin önemli ölçüde daha etkili olmasını sağladığını 

kanıtlamaktadır.   

Anahtar Kelimeler: Derin Öğrenme, İmmün Ağ Modeli, Simbiyotik Öğrenme, Yazılım Sürdürülebilirliği, Güvenlik açığı metrikleri. 
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1. Introduction 

It is possible to define software maintainability as the 

degree of easiness at which the modification of a software 

system or component can be performed for its correction, 

improvement, or adaption to its environment. Software 

maintainability has four major subcategories, such as 

changeability, analysability, testability, and stability.   

There is a high level of correlation between the software 

metrics and maintainability of software, in other words, it is 

possible to develop models for predicting maintainability by 

utilizing software metrics. Furthermore, in object-oriented 

software, maintainability constitutes an essential quality feature 

that helps in enhancing the design and coding of software. 

Object-oriented software metrics predict software 

maintainability in the best way. Software metrics calculate 

different software features describing the physical and functional 

properties of a process, component, or project. Moreover, 

software metrics help developers discover and fix mistakes. 

Vulnerability discovery metrics have considerable potential to 

shed light on the software maintainability failures that may have 

caused introducing vulnerabilities. In the present study, software 

vulnerability metrics are utilized as an indicator of the 

maintainability prediction model.  

Vulnerability detection  play a significant part in software 

security and quality [1]. This paper discussed the subject of 

detecting the correlation of the most relevant vulnerability 

metrics in software maintainability by utilizing deep learning. 

Object-oriented metrics were analyzed, and their effect on open-

source software maintainability was also investigated.  This 

study's goal is to obtain a relationship between vulnerability 

metrics and software maintainability. The relationship is 

determined by a deep learning-based symbiotic immune network 

model. Generally, Deep learning  applied based on the neural 

network architecture [2]. In this paper, the learning mechanism 

from vulnerability metrics is demonstrated and modeled for 

predicting software maintainability. Hence, a symbiotic 

mechanism is employed. 

There is a number of software maintainability prediction 

techniques that are combined with popular learning-based 

approaches. In [3], deep learning was applied for predicting 

software maintainability metrics on many datasets. The said 

study obtained findings in the form of metrics that might be 

utilized for predicting software maintenance, and the suggested 

deep learning model was superior to all other methods analyzed.  

In [4], a suitable model was developed using a hybrid neural 

network to predict the maintainability of object-oriented 

software by utilizing class-level metrics. The findings 

demonstrated that the model developed by the suggested hybrid 

approach yielded better results in comparison with the related 

works. In [5], which used deep learning to detect vulnerabilities 

at the slice level for the first time, it was indicated that other 

studies on the usage of deep learning to detect vulnerabilities 

were at a coarser granularity (e.g., function level). VulDeePecker 

shows how feasible the use of deep learning for vulnerability 

detection is. In [6], the feasibility and advantages of 

implementing deep learning techniques to analyze and detect 

software vulnerabilities were investigated. Furthermore, this 

paper addressed different vulnerability databases/resources and a 

number of the recent successful deep learning applications in the 

prediction of vulnerabilities in the software. In [7], a model was 

created for developing stable associative memory, which can 

solve robustness and optimization tasks. The LSTM was utilized 

to better understand the mechanisms containing the "remember" 

attribute of the immunological behavior of the immune response.   

The principal contributions of the current study are given 

below. 

• This paper is the first model that predicts software 

maintainability using vulnerable software metrics with the deep 

learning-based symbiotic immune network model. This makes 

the proposed methodology an original approach to effectively 

detect and analyze software maintainability prediction. 

• This paper introduces a novel framework trained by 

Long Short-Term-Memory (LSTM) and Gated Recurrent Unit 

(GRU) Recurrent Neural Networks (RNNs) for learning deep 

correlated vulnerable software metrics to detect software 

maintainability. The selected object-oriented metrics are utilized 

in predicting software maintainability. 

• In the current research, we accept determining the 

correlated software metrics from the symbiotic immune network 

model as a combinatorial optimization problem. Therefore, we 

propose a novel methodology called the Symbiotic Immune 

Network. 

The remaining part of this paper is organized in the 

following way. The preliminaries are explained in Part 2.  Part 3 

contains a description of the methods. The proposed method is 

presented in Part 4. The experimental results and discussion are 

shown in Part 5. The conclusion and future studies are presented 

in Part 6.  

2. Preliminaries   

2.1. Vulnerability Metrics for Software 

Maintainability  

It is crucial and difficult to maintain software security 

during the whole software life cycle. Vulnerabilities of software 

systems can lead to various problems, such as deadlock, 

information loss, or system failure. Nowadays, it is becoming 

more challenging to manage software security due to its 

increasing complexity and diversity. During the establishment of 

a novel software system, software maintainability should be 

taken into account together with secure software design 

principles and secure software development life cycles. 

Researchers have recently utilized vulnerability prediction 

approaches based on software metrics for the detection of 

vulnerable codes early for software maintainability. 

2.2. Deep Learning for Software Maintainability 

Prediction Models 

Software maintainability prediction models have been 

studied to help organizations with utilizing costs, allocating 

resources, and acquiring an accurate management plan and 

efficient maintenance process. Nevertheless, it is difficult to 

predict software maintainability, and accurate prediction models 

are needed for this. Deep learning approaches can discover latent 

features that a human expert may never think of including, 

which leads to the significant expansion of the feature search 

space. This means understanding the vulnerability metrics for 

maintainability prediction models so that deep learning-based 

detection systems can learn from these metrics.   



Avrupa Bilim ve Teknoloji Dergisi 

 

e-ISSN: 2148-2683  688 

2.3. Immune Network Theory 

Being a metaphor for different aspects of the natural 

immune system, the artificial immune network represents a 

network of connected recognition cells that learn using feedback 

mechanisms. The fundamental idea of immune networks is that, 

in the case of the recognition of invasive antigens by antibodies, 

various antibodies make up a dynamic network by interacting 

between themselves. The immune system represents an 

interacting network of lymphocytes and molecules with variable 

(V) regions.  Thus, the immune system is regarded as a network 

having the components that are connected by V-V interactions.  

The structure of the immune network represented in figure 1.     

 

Figure 1: Structure of immune networks [8]. 

3. Methods   

3.1. Deep-Learning Based Classifiers 

Deep learning (DL) represents a branch of machine learning 

models. Its ability to extract hierarchical representations from 

input data as a result of the establishment of deep neural 

networks having multiple layers of nonlinear transformations 

characterizes deep learning. 

3.2. Recurrent Neural Network 

Recurrent neural networks (RNNs) can memorize arbitrary 

length sequences of input patterns by establishing relations 

between units. The transition function at every time step (t) takes 

the current time information, which is denoted as Xt, and h(t-1) 

is the previously hidden output. The updating of the current 

hidden output is performed using Equation (1): 

ht= H (Xt+h(t-1))                                              (1) 

In Equation (1), H refers to a nonlinear and differentiable 

transformation function. When the complete sequence is 

processed, the hidden output at the final time step, in other 

words, ht, may be considered as a vector of sequential data. The 

addition of the supervised learning layer on top is performed 

with the aim of mapping the acquired representation ht to 

targets, and it is possible to train the model via backpropagation 

through time. 

3.3. Long-Short-Term-Memory (LSTM) 

LSTM networks represent one of the most effective solutions to 

a sequence of prediction problems because of the recognizing 

patterns in data sequences. Since LSTM networks have a 

particular type of memory, they can selectively remember 

patterns for a long time. They represent quite a reasonable 

approach to predict the period with the unknown long delays that 

occur between important events. The LSTM memory block's 

structure is composed of three gates and a self-recurrent 

connection.   

 

Figure 2: Architecture of the LSTM Recurrent Neural Network 

[9]. 

Ct refers to the memory amount of LSTM unit at time t. The 

output of the LSTM at time t is represented by the ht.  LSTM 

unit,  t denotes the output gate managing the memory content 

exposure.    denotes the sigmoid function, Ĉt refers to a novel 

memory content of the memory unit, which is updated by partly 

forgetting the current memory and adding the novel memory 

content to Ct. 

The current memory forgetting gate is modulated by ft. The 

addition degree of the new memory content to the memory cell 

is modulated by an input gate it. 

3.4. Gated Recurrent Unit (GRU) 

 GRU represents an improved version of standard recurrent 

neural networks (RNNs) [12]. GRU networks have two gates: a 

reset gate (r), which performs the adjustment of incorporating 

novel input with the previous memory, and an update gate (z), 

which performs the control of preserving the previous memory.   
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Figure 3: Architecture of the GRU Recurrent Neural Network 

[9]. 

The update gate helps the model determine the amount of 

the previous information (from past time steps).   Identically, it is 

applicable to ht-1, which holds the information for the past t-1 

units. A sigmoid activation function is employed to squash the 

outcome between 0 and 1. The reset gate is utilized so that the 

model can make a decision on the past information amount 

necessary to forget. The update gate determines what it is 

required to collect from the current memory content ĥt and what 

from the past steps ht-1, final memory at the present time step.   

4. Proposed Method   

The proposed model is a computational modeling paradigm that 

depends on the immense detection and prediction capability of 

immune neural networks. We construct a deep learning-based 

symbiotic immune memory network model that discovers 

software maintainability from vulnerability metrics with 

characteristics that are more prone to software security. This 

makes this methodology a novel approach toward the effective 

detection and analysis of software maintainability. Thus, the 

deep learning-based symbiotic immune network model can 

adaptively learn useful maintainability metrics. 

4.1. The Proposed Deep-Learning Based Symbiotic 

Immune Network Model 

In the proposed framework, the structure of the immune network 

is utilized to identify the metrics of a software maintainability 

candidate solution.  In the current study, we suggest a new cell 

interaction model in a symbiotic manner in which antibodies 

interact with cells. We investigate how to utilize a deep neural 

network (DNN) and immune network to predict software 

maintainability based on vulnerability software metrics. The 

symbiotic immune network displays an Eigen-behavior resulting 

from cell-cell interactions of antibodies in (V) regions within the 

immune system as a co-evolution system. The immune network-

based symbiotic mechanism plays a major role in an interacting 

network of lymphocytes and molecules having variable (V) 

regions. The co-evolution of the populations of heterogeneous 

antibodies affect the formation of idiotypic networks. Thus, 

networks are updated in dynamic progress by integrating the 

novel memorized auto-reactive cells in the network. Therefore, 

the captured long context correlations, in which the dependent 

software metrics are in V regions, are obtained and used to 

predict the software maintainability.  

f(Abi,Agj)=1/(1+∥Abi,Abj∥)               (2) 

Each data was assumed to be denoted as follows:  

x = {x1, x2, . . ., xN}, where N refers to the length of the 

training data (vulnerable software metrics).  

The fitness function in Equation (2) is used to reveal the quality 

of every interacting antibody in novel deep-symbiotic memory. 

We use the Euclidean distance of two software metric (SM) 

vectors to measure their similarity. Each SM serves as an 

antibody.   

In the proposed framework, an enhanced symbiotic immune 

network based on deep learning methods is proposed. Each 

LSTM and GRU recurrent neural network (RNN) model uses its 

functions in the graph as a transformation/aggregation function. 

For each deep learning model, neurons aggregate information 

from their neighbors using a symbiotic immune neural network.   

The meaning of the symbols in the pseudocode of  proposed 

model is as follows: Ab  referes to the antibodies in repertoire, S 

refers to the similarity matrix between every pair of antibody,  

C* denotes the vector that contains the affinity between each 

element Abj, dj denotes the vector that contains the affinity 

between each element from the set C* with other Ab, ζ refers to 

the percentage of the mature antibodies that should be chosen, 

Mj is the memory clone for antibody Abj (that remains from the 

clonal suppression process), Mj* is the resultant clonal memory, 

σd is the natural death threshold, σs refers to the suppression 

threshold, and σcut refers to the cutting threshold. The Euclidean 

distance between the antibodies, capable of forming the affinity 

matrix, expresses Dk,j. In Immune-network-model, matrix Ab 

antibody pool is presented as software metrics to the immune 

network, and matrix S identifies the connections among more 

prone vulnerable antibodies. 

For the detection of code-clones, software metrics are utilized 

with the aim of pooling the nodes into a network-level vector 

representation for every immune network in a separate manner. 

Then, the quantification of the affinity between the interactions 

of an antibody and other antibodies is performed by the 

measurement of the similarity degree (affinity). The affinity is 

employed for the detection of behavioral equivalence between 

SM vectors, which is then generalized to the vulnerability. 

In the proposed framework, an enhanced immune network 

methodology based on DNN methods is proposed.  Each LSTM 

and GRU recurrent neural network (RNN) model uses its 

functions in the graph as a transformation/aggregation function. 

For each RNN model, nodes aggregate information from their 

neighbors using an immune neural network.  

𝑆𝑌𝑀𝐵_𝑀 = 𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙(ℎ𝑖
𝑡 , ℎ𝑗

𝑡)    ∀i , j ϵ E                          (3) 

𝑆𝑌𝑀𝐵_𝑀∗ = 𝑓𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑆𝑌𝑀𝐵_𝑀𝑗𝑖 |∀i , j )            (4) 

ℎ𝑗
(𝑡+1)

= 𝑓𝑢𝑝𝑑𝑎𝑡𝑒(ℎ𝑗
𝑡 , 𝑆𝑌𝑀𝐵_𝑀∗)                                    (5) 
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 Procedure: Deep-Symbiotic Immune Network 

Model   

Input: Set of vectors of vulnerable code-metrics 

Output: The list of software metrics more prone to have security 

vulnerabilities 

Step 1: {Initialize Antibody Pool (Software metrics)}  

Step 2: [Train] {1...N} (Input Size) 

Step 3: For each iteration, do: 

Step 4: For each antibody Abj, j = 1,...,N, (Abj ∈ Ab), do: 

Step 5: Determine fitness (affinity) of each antibodies in 

population P 

Step 6: From C*, re-select ζ% of the antibodies with highest dk,j 

and put them into a matrix Mj of symbiotic memory S;  

Step 7: SYMB_M=CreateDNNSymbioticMemory(Mj, t,State_id)  

Step 8: Co-evaluation of interacting antibodies  of SYMB_M in 

dynamic V region 

Step 8: Apoptosis: eliminate all the memory clones from 

SYM_M whose affinity Dk,j > σd:  

Step 9: Determine the affinity Si,k among the 

DNNclonalmemory. Si,k=|| SYMB_M j,i − SYMB_M j,k ||, ∀i ,k 

Step 10: Clonal suppression: eliminate those DNN memory 

clones whose si,k < σs:  

Step 11: Concatenate the total antibody memory matrix with the 

resultant DNN clonal memory SYMB_Mj * for Abj: Ab{m} ← 

[Ab{m}; SYMB_M j * ] 

Step 12: DNNM* UpdateDNNClonalMemory (SYMB_M j, 

t,State_id)  

Step 13: State_id  State_id+1 

Step 14: Determine the affinity among all the DNN clonal 

memory SYMB_M * antibodies from Ab{m}: Si,k=|| Abi{m} – 

Abk{m} ||, ∀i ,k 

Step 15: Network suppression: eliminate all the antibodies such 

that Si,k < σs: 

Step 16: END For  

Step 17: Build the total antibody matrix Ab← [Ab{m}] 

Step 18: Add list of more prone security metrics 

Step 19: END For 

Figure 4: Pseudocode of proposed model. 

Where finitial represents the initial function, whereas fupdate 

represents the antibody neurons update function. faggregate 

denotes an aggregation function, use as a direct sum. Equations 

(3) and (4) can be regarded as aggregators in which every 

antibody node collects information from its neighbors. Equation 

(5) represents an updater, updating the hidden state of all nodes. 

The structure of Sub-Deep-Symbiotic Immune Network and sub-

network representation for correlated metrics presented in Figure 

5-6, respectively. Figure 7 shows the schema of the proposed 

Deep-learning based symbiotic immune network model.  
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Figure 5: Structure of sub deep-symbiotic immune network.  

  

 

Figure 6: Sub-network representation for correlated metrics. 

 

  Sub- deep network with hidden 
states 
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5. Experimental Results and Discussion 

In the current part, experiments are conducted to assess the 

suggested methods. For the evaluation, we consider five 

commonly employed open-source projects subjected to attacks, 

such as Mozilla, Linux Kernel, Xen Hypervisor, glibc, and httpd 

(https://eden.dei.uc.pt/~nmsa/metrics-dataset/). 

In the present research, we introduce an approach toward 

utilizing vulnerability discovery metrics to ensure insightful 

feedback for software maintainability. We identified a lot of 

potential metric-set combinations to take a decision on the 

correlation of vulnerable metric sets for software maintainability. 

The findings demonstrate that it is possible to use the dataset for 

the purpose of distinguishing which metrics are more prone to 

detect security vulnerabilities.  The best vulnerable software 

metric sets for the suggested LSTM-symbiotic network and 

GRU-symbiotic network are shown in Table 1 and Table 2, 

respectively. The random forest was employed as a classifier.  

The findings showed that using particular software metrics, 

including Max cyclomatic for the LSTM-symbiotic network and 

percent lack of cohesion for the GRU-symbiotic network, it was 

possible to achieve a high accuracy rate above 98% in software 

maintainability metrics prediction.   

 

 

Figure 8-17 plots the Root Mean Square Error (RMSE)-

measure of Deep Learning based Symbiotic Immune Network 

and with respect to the six-software metrics with different 

number of hidden layers. We observe that the generally RMSE-

measure of the six-software metrics achieve good results at 0-5 

layers, and the RMSE-measure of most of these 6-software 

metrics increases when the number of layers is great. To 

empirically test the effect of the number of hidden layers, we 

assessed and compared the model results for each project based 

on six software metrics.   The RMSE was computed to analyze 

the impact of which software metrics useful for robust software 

maintainability prediction.  As shown in Figures 8-12, the 

proposed LSTM-Symbiotic Immune Network achived more 

successful results respectively for encapsulation, inheritance, 

coupling, polymorphism, complexity and size metrics in 

detecting   httpd, glibc, mozilla, linux kernel and xen hypervisor 

projects, respectively.  As the results are depicted in figures 13-

17, the proposed GRU- LSTM-Symbiotic Immune Network 

outperforms encapsulation, size, inheritance, complexity, 

coupling and polymorphism metrics for httpd, glibc, Linux 

kernel, Mozilla and Xen Hypervisor projects respectively, since 

it produces the lowest change in RMSE.   

 

    Figure 7: The schema of the proposed Deep-learning-based symbiotic Immune network model. 

Table 1. Accuracy of Best Vulnerable metrics for software maintainability based on LSTM-Symbiotic Immune Network 

Metric-Set 
Linux Kernel 

(%) 

Mozilla (%) Xen 

Hypervisor (%) 

Httpd (%) Glibc (%) 

Inheritance tree 90.4   96.7 92.1 97.8 91.6 

Max Nesting 91.7 89.5 97.4 96.2 93.5 

CountLine 95.3 93.6 95.5 95.8 92.5 

Max Cyclomatic 96.8 94.7 94.6 98.6 92.7 

Count Path 92.4 94.1 95.7 94.5 94.3 

Percent Lack of Cohesion 95.8 93.8 94 97.2 92.1 
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Table 2. Accuracy of Best Vulnerable metrics for software maintainability based on GRU-Symbiotic Immune Network 

Metric-Set 
Linux Kernel 

(%) 

Mozilla (%) Xen 

Hypervisor (%) 

Httpd (%) Glibc (%) 

Inheritance tree 91.2 95.8 93.6 98.4 92 

Max Nesting 93.8 95.9 94.9 97.3 95.3 

CountLine 94.1 97.5 96.3 95.9 93.7 

Max Cyclomatic 94.6 96.3 96.2 98.1 94.1 

Count Path 95.9 95.2 93.6 97.3 96.8 

Percent Lack of Cohesion 93.8 97.2  96.3 98.7 93.2 

  

 

Figure 8. The relationship between number of hidden layers and root mean square error of different software metric categories for 

LSTM-Symbiotic Immune Network – Linux Kernel Project 

 

Figure 9. The relationship between number of hidden layers and root mean square error of different software metric categories for 

LSTM- Symbiotic Immune Network – Mozilla Project 
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Figure 10. The relationship between number of hidden layers and root mean square error of different software metric categories for 

LSTM- Symbiotic Immune Network – Xen Hypervisor project 

 

Figure 11. The relationship between number of hidden layers and root mean square error of different software metric categories for 

LSTM- Symbiotic Immune Network – Httpd Project 

 

 

Figure 12. The relationship between number of hidden layers and root mean square error of different software metric categories for 

LSTM- Symbiotic Immune Network – Glibc Project 
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Figure 13. The relationship between number of hidden layers and root mean square error of different software metric categories for 

GRU- Symbiotic Immune Network – Linux-Kernel project 

 

Figure 14. The relationship between number of hidden layers and root mean square error of different software metric categories for 

GRU- Symbiotic Immune Network – Mozilla Project 

 

 

Figure 15. The relationship between number of hidden layers and root mean square error of different software metric categories for 

GRU- Symbiotic Immune Network – Xen Hypervisor Project 
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Figure 16. The relationship between number of hidden layers and root mean square error of different software metric categories for 

GRU- Symbiotic Immune Network – Httpd project 

 

 

Figure 17. The relationship between number of hidden layers and root mean square error of different software metric categories for 

GRU- Symbiotic Immune Network – Glibc Project. 

6. Conclusion 

Software maintenance represents a costly activity 

consuming a significant part of the total project's cost [14]. 

Because it is very challenging to track the maintenance behavior 

of software, it becomes difficult to predict cost and the risk 

associated. Using maintainability, it is possible to predict what 

changes or failures can emerge in software following its 

deployment. In the present study, we suggest a novel 

methodology for software maintainability prediction and 

implement the said method on vulnerability metrics.  The 

proposed method was used for identifying the important 

vulnerable software metrics that help enhance the accuracy of 

software maintainability. The current research suggests and 

builds a new framework symbiotic immune network on the basis 

of deep learning in order to improve robustness to predict 

software maintainability.   

The paper demonstrated that utilizing software metrics with 

the symbiotic immune neural network was a good method of 

software maintainability analysis and prediction. In conclusion, 

the findings demonstrate that vulnerable metrics have major 

effects on software maintainability, and it is possible that they 

will have other vulnerabilities hereafter. The software 

maintainability in the symbiotic neural network will be  

 

 

discovered by supplementary improvement approaches in the 

future.   
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