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Abstract 

The distributed permutation flowshop scheduling problem (DPFSP) is a generalization of the regular flowshop scheduling problem 

where several factories are accessible for processing the jobs. In this paper, two new mathematical models are developed by deriving 

inspiration from the formulations developed for the multiple-traveling salesman problem (mTSP), and six different pure Benders 

decomposition algorithms are developed based on different mathematical model formulations. In addition, a hybrid Benders 

decomposition algorithm is developed through the best performed mathematical. Nine newly developed exact methods are compared 

in detail with each other, the best mathematical models given by Naderi and Ruiz (2010) and an automatic Benders decomposition 

algorithm by using the 84 problem instances available in the literature. The consequences of the experiment performed for the 

comparison of all existing and new exact algorithms have revealed that the proposed hybrid Benders decomposition algorithm has 

outperformed considerably when compared to the other methods. In this paper, 4 new best solutions are identified for the DPFSP.  

 

Keywords: Distributed flowshop problem, Mixed integer linear programming, Benders decomposition algorithm, LS3 local search 

procedure.   

Dağıtılmış Permütasyon Akış Tipi Atölye Çizelgeleme Problemi için 

Hibrit Benders Ayrıştırma Algoritması ve Yeni Modeller 

Öz 

Dağıtılmış permütasyon akış tipi çizelgeleme problemi (DPATÇP), işleri işlemek için birkaç fabrikanın mevcut olduğu akış tipi 

çizelgeleme probleminin bir genellemesidir. Bu çalışmada, çoklu gezgin satıcı problemi (ÇGSP) için geliştirilen modellerden 

esinlenilerek iki yeni matematiksel model ve farklı matematiksel modellere dayalı olarak altı farklı saf Benders ayrıştırma algoritmaları 

geliştirilmiştir. Ayrıca, en iyi performansı sağlayan matematiksel model aracılığıyla hibrit bir Benders ayrıştırma algoritması 

geliştirilmiştir. Yeni geliştirilen dokuz kesin çözüm yöntemi, Naderi ve Ruiz (2010) tarafından önerilen en iyi matematiksel modeller 

ve otomatik Benders ayrıştırma algoritması ile literatürde mevcut olan 84 problem seti kullanılarak karşılaştırılmıştır. Tüm mevcut ve 

yeni kesin çözüm algoritmaların karşılaştırılması için gerçekleştirilen deneyin sonuçları, önerilen hibrit Benders ayrıştırma 

algoritmasının diğer yöntemlere kıyasla önemli ölçüde daha iyi performans gösterdiğini ortaya koymuştur. Bu makalede, DPATÇP için 

4 yeni en iyi çözüm saptanmıştır.  

 

Anahtar Kelimeler: Dağıtılmış akış tipi problem, Karışık tamsayı doğrusal programlama, Benders ayrıştırma algoritması, LS3 yerel 

arama prosedürü. 
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1. Introduction 

Machine scheduling problems have been extensively studied 

in the literature for more than 60 years beginning from Johnson's 

first study being conducted (Johnson (1954)). Framinan, Leisten, 

and Ruiz (2014), McKay, Pinedo and Webster (2002) and Pinedo 

(2016) emphasized and discussed the importance of the optimized 

scheduling in detail and in depth. The flowshop scheduling 

problem is one of the most studied versions of the scheduling 

problem in the literature. In a flowshop problem, the machines on 

the production floor are arranged in series and the jobs go through 

all machines in the order determined similar to the mentioned 

way. Each job has a known amount of processing time at each 

machine, meaning a job cannot be processed on the next machine 

unless processed completely on the previous one. The machines 

cannot process more than one job at the same time and no 

preemption is allowed, for example, it is not possible to interrupt 

the jobs once started at any machine. The most commonly studied 

objective in the flowshop literature is the minimization of the 

maximum completion time called makespan. Detailed literature 

reviews on flowshop scheduling problem can be found in 

Fernandez-Viagas, Ruiz, and Framinan (2017), Framinan, Gupta, 

and Leisten (2004), Gupta and Stafford (2006), Hejazi and 

Saghafian (2005), Reisman, Kumar, and Motwani (1997), and 

Ruiz and Maroto (2005). The flowshop problem of a makespan 

criterion is NP-Complete in the strong sense (Garey, Johnson, and 

Sethi (1976)). 

 

The multi factory environment has a critical significance in 

today's centralized globalized economy (Chan et al. (2006); Deng 

and Wang (2017); Jia et al. (2007)). Consequently, the multi 

factory production scheduling environment, the so-called 

distributed scheduling problem, has drawn increasingly more 

attention in recent years (Giovanni and Pezzella (2010); Gupta 

and Stafford (2006); Ying et al. (2017)). The distributed 

permutation flow shop scheduling problem (DPFSP), one of the 

distributed scheduling problem types, is a generalization of the 

conventional permutation flow shop scheduling problem (PFSP). 

In the DPFSP, a set of jobs must be processed at a number of 

identical factories, and each factory is equipped with a series of 

identical machines arranged as a flowshop.  Which job will be 

produced and the order of the jobs to be produced at each factory 

must be decided simultaneously according to a given performance 

measure. 

 

The primary study for the DPFSP was carried out by Naderi 

and Ruiz (2010) and no other study is available as a precise 

solution method in the current literature. In the mentioned study, 

Naderi and Ruiz (2010) presented six different linear 

programming models. The best 2 performances were shown by 

the minimal sequence-based distributed permutation flowshop 

scheduling model and position-based distributed permutation 

flowshop scheduling model, respectively, among these 6 different 

linear programming models. In this study, Naderi and Ruiz (2010) 

also proposed two factory assignment rules together with 14 

heuristics based on dispatching rules, NEH method (Nawaz, 

Enscore, and Ham (1983)), and a variable neighborhood decent 

method (VND). As revealed by computational and statistical 

analysis, the NEH based heuristics with two factory assignment 

rules (denoted by NEH1 and NEH2, respectively) and the VND 

with two acceptance criteria (referred to as VNDa and VNDb, 

respectively) were the top four effective heuristics. Numerous 

heuristics and metaheuristics have been also proposed for solving 

the DPFSP by minimizing the makespan criterion since the first 

study conducted by Naderi and Ruiz (2010). Liu and Gao (2010) 

presented an electromagnetism metaheuristic (EM) by combining 

numerous local search neighborhoods. They were able to improve 

151 best-known solutions out of 720 large instances presented in 

Naderi and Ruiz (2010) but involving a significantly larger CPU 

time. An improved version of NEH2 of Naderi and Ruiz (2010) 

heuristic by using a novel insertion rule was presented by Gao and 

Chen (2011a). In the same year, a hybrid genetic algorithm (HGA) 

with an enhanced local search method was put forward by Gao 

and Chen (2011b). A revised VND by hybridizing the VND 

method and improved NEH heuristic was proposed by Gao et al. 

(2012). A tabu search (TS) algorithm based on exchanging sub-

sequences between factories to generate neighboring solutions 

was presented by Gao, Chen, and Deng (2013). In the same year, 

a modified iterated greedy (MIG) method was put forward by Lin, 

Ying, and Huang (2013). They obtained much better results than 

the HGA and TS with greatly reduced CPU time by applying 

MIG. Once more, in the same year, an estimation of distribution 

algorithm (EDA) that uses explicit probability distributions in the 

search process was proposed by Wang et al. (2013). A scatter 

search algorithm (called SSNR) was presented by Naderi and 

Ruiz (2014). They deduced that the SSNR was a clear winner 

against the HGA, MIG, EM, TS, VNDa, VNDb, and VND (B&B). 

A hybrid immune algorithm (HIA) was proposed by Xu et al. 

(2014). The authors claimed that the HIA improved 585 out of 720 

instances of Naderi and Ruiz (2010). A bound-search iterated 

greedy (BSIG) that incorporates several different local search 

procedures was proposed by Fernandez-Viagas and Framinan 

(2015). It was compared to the EDA, IG, and best methods 

presented in Naderi and Ruiz (2010). The results provided show 

a clear superiority of the BSIG over three other methods tested. 

The authors also improved 263 of the original 720 best-known 

solutions. More recently, a two-stage iterated greedy algorithm 

(IG2S) was presented by Ruiz, Pan, and Naderi (2019). The 

authors obtained 497 new upper bounds and average Relative 

Percentage Deviations were reduced by 60% when compared to 

BSIG and 81% when compared to SSNR. 

  

As mentioned above, there is no study as an exact solution 

method for the DPFSP problem, except for the six linear 

programming model proposed by Naderi and Ruiz (2010). The 

best performance was given by the position-based distributed 

permutation flowshop scheduling model and minimal sequence-

based distributed permutation flowshop scheduling model among 

these six models presented by Naderi and Ruiz (2010). In addition 

to these two best models of Naderi and Ruiz (2010), in this paper; 

two new models are developed based on the multiple-traveling 

salesman problem (mTSP) formulations available in Bektas 

(2006). After detecting the most effective existing and new 

mathematical formulations, these are the permutation flowshop 

scheduling model and the model developed through the multiple-

traveling mTSP-assignment based integer programming 

formulation, different benders algorithms are developed using 

these models. Four different Benders decomposition algorithms 

are developed and tested based on the permutation flowshop 

scheduling model. The proposed pure benders algorithm through 

the permutation flowshop scheduling model follows the 4 

different strategies that are given below. 

 

1. Upon having solved the master model, the entire solution 

obtained from the master model solution (all decision 
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variables taking the value of 1) is fixed in the subproblem. 

One large optimality cut is obtained from the subproblem 

solution and this optimality cut is added to the master model 

to be solved in the next Benders iteration. 

2. After having solved the master model, the master model 

solution is decomposed according to the factories to which at 

least 1 job is assigned. Then, separate cuts are obtained for 

each solution and afterward, each optimality cut obtained is 

added to the master problem separately for all factories for 

the subsequent master problem solution. 

3. After having solved the master model, the makespans are 

calculated disjointedly for the factories to which at least 1 job 

is assigned in the master problem solution. The subproblem 

is solved only for the factory yielding the longest makespan 

and a single optimality cut is inserted into the master problem 

only for the factory yielding the longest makespan. 

4. After having solved the master model, the makespan is 

calculated separately for the factories to which at least 1 

factory is assigned in the master problem solution. The 

subproblem is solved only for the factory yielding the longest 

makespan and the optimality cut obtained from the 

subproblem solution is inserted separately for all factories. 

 

Also, two different pure Benders decomposition algorithms are 

developed and tested based on the mTSP-assignment based 

integer programming formulation. The mTSP-assignment based 

integer programming formulation is structurally only suitable for 

the first and third the cut adding strategies mentioned above. In 

addition to these newly developed eight different exact methods, 

a hybrid Benders decomposition algorithm is developed by 

hybridizing the LS3 local search algorithm with the strategy one 

based pure Benders algorithm that is developed over the 

permutation flowshop scheduling model, in order to be able to 

accelerate the convergence of the Benders algorithm. Twelve 

different exact solution methods are compared with each other by 

using 84 problem instances and also the automatic Benders 

decomposition algorithm available ready-to-use in the CPLEX 

software. Experimental results demonstrated that the proposed 

hybrid algorithm is superior to all of the existing and new methods 

in terms of its efficiency and effectiveness. In this paper, 4 new 

best solutions are also determined for the DPFSP. 

 

The remainder of this paper is structured as follows. Two new 

linear programming models developed by inspiring by the mTSP 

and the best two linear programming models put forward by 

Naderi and Ruiz (2010) are given in Section 2. Six different 

Benders decomposition algorithms developed are given in 

Section 3 and also the proposed hybrid Benders decomposition 

algorithm in Section 4. Computational results are presented in 

Section 5, followed by conclusions in Section 6. 

2. Linear Programming Models 

In this Section, the most performant two mathematical given 

in Naderi and Ruiz (2010) are presented and also two new models 

are developed by inspiring two different mTSP formulations. 

Before presenting each model, we initiate by informing about the 

parameters and indices employed. The common parameters and 

indices for all six proposed models are defined in Table 1. 

The objective function for all models is makespan 

minimization: 

 

Objective: Minimize Cmax (1) 

2.1. Position-based Linear Programming Model 

Six models were proposed in Naderi and Ruiz (2010) and the 

following model is reported as the model giving the 2nd best 

performance in Naderi and Ruiz (2010) and called the model 

number 3 in their paper. In this paper, this model is demonstrated 

as Model_1. In this model, the decision variables given below 

have been used: 

Ck,i,f  Continuous variable representing the completion time of 

the job in position k on machine i at factory f .  

Xj,k,f  Binary variable that takes value 1 if job j occupies position 

k in factory f , and 0 otherwise. 

  

The Model_1 is a position-based distributed permutation 

flowshop scheduling model and its mathematical model is given 

in detail below. 

Objective function: Minimize Cmax (Equation 1) 

Subject to: 

 ∑ ∑ 𝑋𝑗,𝑘,𝑓 = 1     𝐹
𝑓=1

𝑁
𝑘=1  𝑗 ∈ {1, … , 𝑁} (2) 

 ∑ ∑ 𝑋𝑗,𝑘,𝑓 = 1     𝐹
𝑓=1

𝑁
𝑗=1 𝑘 ∈ {1, … , 𝑁} (3) 

𝐶𝑘,𝑖,𝑓  ≥ 𝐶𝑘,𝑖−1,𝑓 + ∑𝑋𝑗,𝑘,𝑓

𝑁

𝑗=1

 . 𝑃𝑗,𝑖      𝑘 ∈ {1, … , 𝑁};  𝑖

∈ {1, … ,𝑀};  𝑓 ∈ {1, … , 𝐹} 

(4) 

𝐶𝑘,𝑖,𝑓  ≥ 𝐶𝑘−1,𝑖,𝑓 + ∑𝑋𝑗,𝑘,𝑓

𝑁

𝑗=1

 . 𝑃𝑗,𝑖      𝑘 ∈ {2, … , 𝑁};  𝑖

∈ {1, … ,𝑀};  𝑓 ∈ {1, … , 𝐹} 

(5) 

𝐶𝑚𝑎𝑥  ≥ 𝐶𝑘,𝑀,𝑓     𝑘 ∈ {1, … , 𝑁};  𝑓 ∈ {1, … , 𝐹} (6) 

𝐶𝑘,0,𝑓 = 0     𝑘 ∈ {1, … , 𝑁};  𝑓 ∈ {1, … , 𝐹} (7) 

𝐶𝑘,𝑖,𝑓  ≥ 0      𝑘 ∈ {1, … , 𝑁};  𝑖 ∈ {1, … ,𝑀};  𝑓

∈ {1, … , 𝐹} 
(8) 

𝑋𝑗,𝑘,𝑓  ∈ {0, 1}   𝑘 ∈ {1, … , 𝑁};  𝑖 ∈ {1,… ,𝑀};  𝑓

∈ {1, … , 𝐹} 
(9) 

With Constraint set (2), it is enforced that every job must 

occupy exactly one position in the sequence. Constraint set (3) 

states that n positions among all nF possible must be occupied. 

Constraint set (4) controls that the processing of job in position k 

of factory f at each machine can only start when the processing of 

the same job on the previous machine is finished. Constraint set 

(5) ensures that each job can start only after the previous job 

assigned to the same machine at the same factory is completed. 

Notice that this previous job might not be exactly in the previous 

position but in any preceding positions. Constraint set (6) 

formulates the makespan. Constraint set (7) ensures that the 

completion time of the job in position k on machine 0 at factory f 

must be 0. Lastly, Constraint sets (8) and (9) define the decision 

variables. 
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Table 1. Parameters and indices used in the models. 

Parameter Description 

N Number of jobs 

M Number of machines 

F Number of factories 

j, k Index for jobs (or job positions in a sequence); j, k ∈ 

{1, 2,..., N} 

i, l Index for machines; i, l ∈ {1, 2,...,M} 

f Index for factories; f ∈ {1, 2,..., F} 

Oj,i Operation of job j at machine i 

Pj,i Processing time of Oj,i 

bigM A sufficiently large positive number 

 

2.2. Minimal Sequence-based Linear 

Programming Model 

The model given below is the best performing model among 

the models proposed by Naderi and Ruiz (2010) and called as the 

model 5 in their paper. In this paper, this model is denoted as 

Model_2. The said model is a minimal sequence-based distributed 

permutation flowshop scheduling model. Model_2 can solve the 

DPFSP without actually indexing the factories. Since the 

sequence-based variables are used, dummy jobs 0 need to be 

defined. Model_2 needs the following decision variables given 

below. 

Xk,j  Binary variable that takes value 1 if the job j is processed 

immediately after the job k; and 0 otherwise.   

Cj,i  Continuous variable for the completion time of the job j on 

the machine i. 

Model_2 exploits the dummy job 0 in such a way that it 

partitions a complete sequence into F parts each of which 

corresponds to a factory. This is performed through F repetitions 

of dummy job 0 in the sequence along with the other jobs. 

Therefore, this model searches the space with a sequence counting 

n+F positions. One of these repetitions takes place in the first 

position of the sequence. All the subsequent jobs until the second 

repetition of dummy job 0 are scheduled in factory 1 with their 

current relative order. The jobs between the second and third 

repetitions of dummy job 0 are those allocated to factory 2. This 

repeating for all the subsequent repetitions of dummy job 0, the 

jobs after the F-th repetition of dummy job 0 until the last job in 

the sequence are those assigned to factory F. For example, 

consider a problem with N = 6 and F = 2, one of the possible 

solutions is X0,1 =X1,3 =X3,6 =X6,0 =X0,4 =X4,2 = X2,1 = X1,5 = 1; that 

is, {0, 3, 6, 0, 4, 2, 1, 5}. In this example, the jobs 3 and 6 are 

allocated to factory 1 with this order {3, 6} whereas the other jobs 

are assigned to factory 2 with the permutation or sequence {4, 2, 

1, 5}. Model_2 is given in detail below. 

 

Objective function: Minimize Cmax (Equation 1) 

Subject to: 

 
 ∑ 𝑋𝑘,𝑗 = 1     𝑗 ∈ {1, … , 𝑁} | 𝑗 ≠ 𝑘𝑁

𝑘=0  (10) 

 ∑ 𝑋𝑘,𝑗  ≤ 1     𝑘 ∈ {1, … ,𝑁} | 𝑘 ≠ 𝑗𝑁
𝑗=0,𝑘≠𝑗  (11) 

 ∑ 𝑋0,𝑗  = 𝐹𝑁
𝑗=1  (12) 

 ∑ 𝑋𝑘,0 = 𝐹 − 1𝑁
𝑘=1  (13) 

𝑋𝑘,𝑗 + 𝑋𝑗,𝑘  ≤ 1     𝑘 ∈ {1, … , 𝑁 − 1};  𝑗 ∈ {1, … , 𝑁}| 𝑗

≠ 𝑘, 𝑗 > 𝑘 
(14) 

𝐶𝑗,𝑖  ≥  𝐶𝑗,𝑖−1 + 𝑃𝑗,𝑖      𝑗 ∈ {1, … , 𝑁};  𝑖 ∈ {1, … ,𝑀} (15) 

𝐶𝑗,𝑖  ≥  𝐶𝑘,𝑖 + 𝑃𝑗,𝑖 + 𝑏𝑖𝑔𝑀(𝑋𝑘,𝑗 − 1)  𝑘,

∈ {1, … , 𝑁} | 𝑘 ≠ 𝑗;  𝑖 ∈ {1, … ,𝑀} 
(16) 

𝐶𝑚𝑎𝑥  ≥ 𝐶𝑗,𝑀      𝑗 ∈ {1, … , 𝑁} (17) 

𝐶𝑗,𝑖  ≥ 0     𝑗 ∈ {1, … , 𝑁};  𝑖 ∈ {1, … ,𝑀} (18) 

𝑋𝑘,𝑗  ∈ {0, 1}   𝑘, 𝑗 ∈ {0, … , 𝑁} | 𝑘 ≠ 𝑗 (19) 

Note that Ck,0 = C0,l = 0. Constraint set (10) ensures that every 

job is required to be accurately at one position. Constraint set (11) 

indicates that every job has at most one subsequent job. Constraint 

set (12) enforces that dummy job 0 appears F times in the 

sequence as a predecessor where Constraint set (13) assures 

dummy job 0 must be a successor F−1 times. Constraint set (14) 

avoids the occurrence of cross-precedencies, meaning that a job 

cannot be at the same time both a predecessor and a successor of 

another job. Constraint set (15) forces that for every job j, Oj,i 

cannot begin before Oj,i−1 completes. Similarly, Constraint set (16) 

specifies that if job j is scheduled immediately after the job k it's 

processing on each machine i cannot begin before the processing 

of the job k on the machine i finishes. Constraint set (17) defines 

the makespan. Lastly, Constraint sets (18) and (19) define the 

decision variables. 

2.3. Linear Programming Model Based on the 

mTSP-assignment Based Integer Programming 

Formulation 
 

This model (represented by Model_3) is developed based on 

the assignment-based integer programming formulation (Bektas 

(2006)) proposed for the mTSP solution. DPFSP is correlated to 

the scheduling of M jobs for F factories and mTSP is a 

generalization of the well-known traveling salesman problem, 

where more than one salesman is allowed to be used in the 

solution. In this sense, the scheduling of the jobs for F separate 

factories in the DPFSP and the usage of more than one salesman 

in the mTSP illustrates structural similarity. As a result, the 

developed new model (Model_3) enables the usage of the subtour 

elimination constraints proven to be effective. Model_3 uses the 

same decision variables (Xk,j  and Cj,i) with Model_2. In the 

original mTSP model, the decision variable Xk,j is as follows and 

this decision variable is also pertinent to the DPFSP.  
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Xk,j (in mTSP)  Binary variable that takes value 1 if arc (k, j) is 

used on the tour; and 0 otherwise.   

Xk,j (in Model_3)  Binary variable that take-s value 1 if the job 

j is processed immediately after the job k; and 0 otherwise. 

Model_3 also needs the continuous variable (Cj,i ) for deciding the 

completion time of the job j on the machine i. 

 

The integer linear programming formulation developed by 

drawing inspiration from the mTSP-assignment based integer 

programming formulation for the DPFSP solution is as follows:  

 

Objective function: Minimize Cmax (Equation 1) 

Subject to: 

∑𝑋0,𝑗  = 𝐹

𝑁

𝑗=1

 (20) 

∑ 𝑋𝑘,0 = 𝐹

𝑁

𝑘=1

 (21) 

∑ 𝑋𝑘,𝑗 = 1     𝑗 ∈ {1, … , 𝑁} | 𝑗 ≠ 𝑘

𝑁

𝑘=0

 (22) 

∑𝑋𝑘,𝑗 = 1      𝑘 ∈ {1, … , 𝑁}| 𝑘 ≠ 𝑗

𝑁

𝑗=0

 (23) 

𝑈𝑘 − 𝑈𝑗  + 𝑁𝑋𝑘,𝑗 ≤ 𝑁 − 1     𝑘, 𝑗 ∈ {1, … , 𝑁} | 𝑘 ≠ 𝑗 (24) 

And, Constraint sets (15), (16), (17), (18) and (19) 

Note that Ck,0 = C0,l = 0. Constraint sets (20) and (21) ensure that 

exactly F salesmen depart from and return back to node 0 (the 

depot). Constraint sets (22) and (23) are the usual assignment 

constraints. Constraints (24) are used for preventing the sub tours, 

being degenerate tours that are formed between intermediate 

nodes and not associated to the origin. These constraints are 

named as subtour elimination constraints. 

2.4. Linear Programming Model Based on the 

mTSP-flow-based Formulation 
This model (shown by Model_4), is developed by inspiring 

the flow-based formulation available in Bektas (2006). In 

Model_4, the three-index decision variable given below is used.  

Xk,j,f  Binary variable that takes value 1 if vehicle f (factory) 

visits the node j (job j) immediately after the node k (job k); and 0 

otherwise. 

Similarly, Model_4 also requires the continuous variable (Cj,i ) for 

deciding the completion time of the job j on the machine i. 

Objective function: Eq. (1)  

Subject to: 

∑ ∑ 𝑋𝑘,𝑗,𝑓 = 1     

𝐹

𝑓=1

𝑁

𝑘=0|𝑘≠𝑗

 𝑗 ∈ {1, … , 𝑁} (25) 

∑ 𝑋𝑘,𝑝,𝑓

𝑁

𝑘=0|𝑘≠𝑝

− ∑ 𝑋𝑝,𝑗,𝑓 = 0

𝑁

𝑗=0|𝑗≠𝑝

  𝑝 ∈ {0, … , 𝑁};  𝑓

∈ {1, … , 𝐹} 

(26) 

∑𝑋0,𝑗,𝑓 = 1      𝑓 ∈ {1, … , 𝐹}

𝑁

𝑗=1

 (27) 

𝑈𝑘 − 𝑈𝑗  + 𝑁 ∑ 𝑋𝑘,𝑗,𝑓

𝐹

𝑓=1

≤ 𝑁 − 1     𝑘, 𝑗

∈ {1, … , 𝑁} | 𝑘 ≠ 𝑗 

(28) 

𝐶𝑗,𝑖  ≥  𝐶𝑘,𝑖 + 𝑃𝑗,𝑖 + 𝑏𝑖𝑔𝑀(𝑋𝑘,𝑗,𝑓 − 1)   

𝑘, 𝑗 ∈ {1, … , 𝑁} | 𝑘 ≠ 𝑗;  𝑖 ∈ {1, … ,𝑀};  𝑓
∈ {1, … , 𝐹} 

(29) 

𝑋𝑘,𝑗,𝑓  ∈ {0, 1}   𝑘, 𝑗 ∈ {0, … , 𝑁} | 𝑘 ≠ 𝑗;  𝑓

∈ {1, … , 𝐹} 
(30) 

And, Constraint sets (15), (17) and (18) 

 

Note that Ck,0 = C0,l = 0. Constraints (25) state that each 

customer (job) be visited exactly once and (26) are the flow 

conservation constraints ensuring that once a salesman (factory) 

visits a customer (job), then he must also depart from the same 

customer (job). Constraints (27) ensure that each vehicle (factory) 

is used exactly once and (28) is the extension of the sub tour 

elimination constraint to a three-index model. Constraint set (29), 

in a manner similar to the Constraint set (16), specifies that if the 

job j is scheduled immediately after the job k its processing on 

each machine i at the factory f cannot begin before processing the 

job k on the machine i at the factory f finishes. 

 

3. Pure Benders Decomposition Algorithm-

based Models 

Benders decomposition has been proven a powerful technique for 

solving specially-structured large-scale linear and mixed-integer 

programs since its presentation in Benders (1962) (Sherali, and 

Fraticelli (2002)). The decomposition of a given model into 

master and subproblem is allowed. No more than a subset of the 

variables and constraints of the original model is incorporated in 

the master problem. The subproblem is the original model, the 

master problem variables of which are fixed, whose solution 

yields either optimality or feasibility cut for the master problem 

(Costa et al., (2012)). The Benders decomposition algorithm 

repeats between the master and sub-problem until an optimal 

solution is obtained. Readers can refer to the recent survey article 

presented by Rahmaniani et al. (2017) on the application of the 

Benders decomposition algorithm to combinatorial optimization 

problems. 

 

In the following two sub-sections, four different pure Benders 

decomposition algorithm are developed based on Model_1 and 

two different pure Benders decomposition algorithm by using 

Model_3. 

3.1. Model_1 Based Pure Benders Decomposition 

Algorithm 

In this sub-section, four diverse pure Benders decomposition 

algorithms are developed based upon Model_1.  

3.1.1. Version 1 of the Model_1 Based Pure Benders 

Decomposition Algorithm 

This version of the pure Benders decomposition algorithm 

developed based on Model_1 is denominated as PB_Model1_V1. 

In PB_Model1_V1, after having solved the master model, the 

whole solution obtained from the master model solution (all 

decision variables taking the value of 1) is fixed in the 

subproblem. One large cut is obtained from the subproblem 

solution and this cut is added to the master model to be solved in 

the next Benders iteration. The subproblem is the dual of the 

primal subproblem and the primal subproblem is obtained by 

excluding the constraints from the original model that are 

common to the master model.  
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Let 𝑀(𝐶, 𝑋) denote the formulation (1)-(9) where 𝑋 = |𝑗, 𝑘 =
1, . . . , 𝑁;  𝑓 = 1, . . . , 𝐹} and 𝐶 =  {𝐶𝑘,𝑖,𝑓| 𝑘 =  1, . . . , 𝑁;  𝑖 =

1, . . . , 𝑀;  𝑓 = 1, . . . , 𝐹} are the vectors of the decision variables. 

Let’s suppose that the variables X have been fixed as 𝑋 =  �̂� =
{𝑋 | 𝑋 satisfies (2), (3), (9)} . The resulting formulation, shown 

by 𝑀(𝐶, �̂�), consists of only the variables C, and the constraints 

of which are assigned the dual variables 𝛼 = {𝛼𝑘,𝑖,𝑓 ≥ 0 | 𝑘 =

1, . . . , 𝑁; 𝑖 = 1, . . . , 𝑀; 𝑓 = 1, . . . , 𝐹} corresponding to constraints 

(4), 𝛽 = {𝛽𝑘,𝑖,𝑓 ≥ 0 | 𝑘 = 2, . . . , 𝑁; 𝑖 = 1, . . . , 𝑀; 𝑓 =

1, . . . , 𝐹} corresponding to constraints (5), 𝛾 = {𝛾𝑘,𝑓 ≥ 0 | 𝑘 =

1, . . . , 𝑁; 𝑓 = 1, . . . , 𝐹} corresponding to constraints (6), and 𝛿 =

{𝛿𝑘,𝑓 = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 | 𝑘 = 1, . . . , 𝑁; 𝑓 = 1, . . . , 𝐹} 

corresponding to constraints (7), respectively. The dual 𝐷 =

(𝛼, 𝛽, 𝛾, 𝛿, �̂�) of 𝑀(𝐶, �̂�) is given by the following: 

Maximize    ∑ ∑ ∑ 𝛼𝑘,𝑖,𝑓

𝐹

𝑓=1

𝑀

𝑖=1

𝑁

𝑘=1

∑�̂�𝑗,𝑘,𝑓𝑃𝑗,𝑖

𝑁

𝑗=1

+ ∑ ∑ ∑ 𝛽𝑘,𝑖,𝑓

𝐹

𝑓=1

𝑀

𝑖=1

𝑁

𝑘=2

∑�̂�𝑗,𝑘,𝑓𝑃𝑗,𝑖

𝑁

𝑗=1

 

(31) 

Subject to: 

𝛿𝑘,𝑓 − 𝛼𝑘,1,𝑓 ≤ 0     𝑘 ∈ {1, … , 𝑁}; 𝑓 ∈ {1, … , 𝐹} (32) 

∑ ∑ 𝛾𝑘,𝑓 ≤

𝐹

𝑓=1

𝑁

𝑘=1

1 (33) 

𝛼1,𝑖,𝑓 − 𝛼1,𝑖+1,𝑓  −  𝛽2,𝑖,𝑓 ≤ 0     𝑖 ∈ {1, … ,𝑀 − 1};  𝑓

∈ {1, … , 𝐹} 
(34) 

𝛼1,𝑀,𝑓 − 𝛽2,𝑀,𝑓  −  𝛾1,𝑓 ≤ 0     𝑓 ∈ {1, … , 𝐹} (35) 

𝛼𝑘,𝑖,𝑓 − 𝛼𝑘,𝑖+1,𝑓 + 𝛽𝑘,𝑖,𝑓 − 𝛽𝑘+1,𝑖,𝑓 ≤ 0 

𝑘 ∈ {2, … , 𝑁 − 1}; 𝑖 ∈ {1, … ,𝑀 − 1}; 𝑓 ∈ {1, … , 𝐹} 
(36) 

𝛼𝑘,𝑀,𝑓 + 𝛽𝑘,𝑀,𝑓 − 𝛽𝑘+1,𝑀,𝑓 − 𝛾𝑘,𝑓 ≤ 0     𝑘

∈ {2, … , 𝑁 − 1}; 𝑓 ∈ {1,… , 𝐹} 
(37) 

𝛼𝑁,𝑖,𝑓 − 𝛼𝑁,𝑖+1,𝑓 + 𝛽𝑁,𝑖,𝑓 ≤ 0     𝑖 ∈ {1, … ,𝑀 − 1}; 𝑓

∈ {1, … , 𝐹} 
(38) 

𝛼𝑁,𝑀,𝑓 + 𝛽𝑁,𝑀,𝑓 − 𝛾𝑁,𝑓 ≤ 0     𝑓 ∈ {1, … , 𝐹} (39) 

 

The model (master model) consisting of the Constraint sets 

(2), (3), and (9) always generates a viable solution, which, in turn, 

means that 𝐷 = (𝛼, 𝛽, 𝛾, 𝛿, �̂�) is always feasible for a given �̂�, 

and for an optimal solution (𝛼, 𝛽, 𝛾, 𝛿) of the dual problem, one 

obtains the following Benders optimality cuts: 

 

𝑧 ≥ ∑ ∑ ∑ 𝐴𝑗,𝑘,𝑓𝑋𝑗,𝑘,𝑓

𝐹

𝑓=1

𝑁

𝑘=1

𝑁

𝑗=1

+ ∑ ∑ ∑ 𝐵𝑗,𝑘,𝑓𝑋𝑗,𝑘,𝑓

𝐹

𝑓=1

𝑁

𝑘=2

𝑁

𝑗=1

 

where z is a lower bound on the optimal solution value of 

𝑀(𝐶, 𝑋), 𝐴𝑗,𝑘,𝑓 = ∑ �̂�𝑘,𝑖,𝑓
𝑀
𝑖=1 𝑃𝑗,𝑖 

and 𝐵𝑗,𝑘,𝑓 = ∑ �̂�𝑘,𝑖,𝑓
𝑀
𝑖=2 𝑃𝑗,𝑖. Using this result, we are now ready to 

present the following reformulation of 𝑀(𝐶, 𝑋), referred to as the 

master problem constructed using the set PD of extreme points of 

𝐷 = (𝐶, 𝑋) and shown as MP(PD) below: 

 

Minimize 𝑧 (40) 

 

Subject to: 

∑ ∑ 𝑋𝑗,𝑘,𝑓 = 1     

𝐹

𝑓=1

𝑁

𝑘=1

 𝑗 ∈ {1, … , 𝑁} (41) 

∑ ∑ 𝑋𝑗,𝑘,𝑓 = 1     

𝐹

𝑓=1

𝑁

𝑗=1

𝑘 ∈ {1, … , 𝑁} (42) 

𝑧

≥ ∑ ∑ ∑ 𝐴𝑗,𝑘,𝑓𝑋𝑗,𝑘,𝑓

𝐹

𝑓=1

𝑁

𝑘=1

𝑁

𝑗=1

+ ∑ ∑ ∑ 𝐵𝑗,𝑘,𝑓𝑋𝑗,𝑘,𝑓       (𝛼, 𝛽, 𝛾, 𝛿) ∈ 𝑃𝐷

𝐹

𝑓=1

𝑁

𝑘=2

𝑁

𝑗=1

 

(43) 

𝑋𝑗,𝑘,𝑓  ∈ {0, 1}   𝑘 ∈ {1, … , 𝑁};  𝑖 ∈ {1,… ,𝑀};  𝑓

∈ {1, … , 𝐹} 
(44) 

Since the MP includes a large number of optimality cuts, it can be 

solved by using a cutting plane algorithm in practice, normally 

starting with MP (∅) with no optimality cuts (43) and generating 

the cuts on an as-needed basis. The algorithm usually stops after 

having solved a certain MP(P), where 𝑃 ⊂ 𝑃𝐷. 

 

3.1.2. Version 2 of the Model_1 Based Pure Benders 

Decomposition Algorithm 

In this version (shown by PB_Model1_V2) as a more 

dissimilar approach, rather than producing only one cut over the 

solution received from the master model, the jobs found in the 

solution received from the master model are decomposed in 

accordance with the factories to which they are assigned. 

Subsequently, separate cuts are obtained for the factory solutions 

to which at least 1 job is assigned in the master model and 

afterward, each cut obtained is added to the master problem 

independently for all factories for the subsequent master problem 

solution. In other words, let’s assume that the number of factories 

(F) is 2 and at least 1 job is assigned to each factory in the master 

problem solution. The subproblem is solved by using the cluster 

of jobs assigned to each factory and the produced cut is separately 

added to the master model for each factory. Since there is at least 

1 job assigned to each factory in this example, 4 cuts in total are 

generated in each iteration and added to the master model. To 

explain with a more explanatory example, consider a problem 

with N = 6 and F = 2, one of the possible MP solutions is X1,1,1 

=X2,3,1 =X3,6,1 =X4,2,2 =X5,4,2 =X6,5,2 = 1. In this example, the jobs 1, 

2 and 3 are allocated to factory 1 with this order {1, 2, 3} while 

the other jobs are assigned to factory 2 with the permutation or 

sequence {4, 5, 6}. According to this multiple cut generating and 

adding strategy, 2 different submodels consisting of the jobs {1, 

2, 3} and {4, 5, 6} are generated. Each submodel is solved and 

each cut obtained from the submodel is added to the master model 

for every 2 factories. Since at least 1 job is assigned to each 

factory in the example, 2 different submodels are generated and 

solved. Each cut is added to the master model for every 2 

factories. Thus, 4 cuts in total are added to the master model for 

this example.  

 

In this version, the dual problem is independent from the factory 

indices. The main steps of this version of the problem are given 

below. 

Input: Problem data, allowable optimality gap 𝜀 ≥ 0  

1. Set LB = -∞, UB = ∞ 

2: while (LB ≤ UB) do 
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3:   Solve MP in order to obtain �̂� = {𝑋|𝑋 satisfies (2), (3),
and (9)}, and obtain solution value, obj_master 

4.   if (LB < obj_master) 

5:   LB = obj_master; 

6:   endif  

7:   for (f = 1 to F) //factory indices 

8:    counter = 1; 

9:    for (j= 1 to N) //job indices  

10:    for (k = 1 to N) //position indices  

11:     if (Xj,k,f  == 1)  

12:     JL [counter] = j; //job list 

13:     PL [counter] = k; //position list 

14:     counter = counter + 1; 

15:     endif      

16:    endfor 

17:   endfor 

18:   NJ = counter -1; //number of job in the factory f 

19.   if (NJ > 0) 

20:   Solve SP depending on the jobs in JL and obtain the 

solution value of SP, obj_sub 

21:    if (UB > obj_sub) 

22:     UB = obj_sub; 

23:    endif 
25:    for (g=1 to F) //g used for denoting the factories 

26:  Insert optimality cut to MP for factory g by using 

the jobs in JL and theirs original positions in list PL 

27:    endfor 

24:   endif  

28:  endfor 

29: endwhile  

30: Report the best solution found by the last MP solution 

 

The subproblem is the dual of the model given below. Please 

note that the model has been transformed into the classic flow 

shop model. If there is at least 1 job assigned to at least one factory 

whatsoever in the solution obtained from the master problem, the 

subproblem is solved for that factory and the obtained cut is 

inserted again into the master problem separately by considering 

the original positions of the decision variables coming from the 

master problem solution. That is to say, the same cut is inserted 

into the master problem separately for each factory by considering 

the positions of the decision variables coming from the master 

problem solution. 

 

Minimize Cmax  =  𝐶𝑁𝐽,𝑀 (45) 

𝐶𝑘,𝑖  ≥ 𝐶𝑘,𝑖−1 + ∑�̂�𝐽𝐿[𝑗],𝑘𝑃𝐽𝐿[𝑗],𝑖

𝑁𝐽

𝑗=1

     𝑘 ∈ {1, … , 𝑁𝐽};  𝑖

∈ {1, … ,𝑀} 

(46) 

𝐶𝑘,𝑖  ≥ 𝐶𝑘−1,𝑖 + ∑ �̂�𝐽𝐿[𝑗],𝑘𝑃𝐽𝐿[𝑗],𝑖

𝑁𝐽

𝑗=1

     𝑘 ∈ {2, … , 𝑁𝐽};  𝑖

∈ {1, … ,𝑀} 

(47) 

𝐶𝑘,0 = 0     𝑘 ∈ {1,… , 𝑁𝐽} (48) 

𝐶𝑘,𝑖  ≥ 0      𝑘 ∈ {1, … , 𝑁𝐽};  𝑖 ∈ {1, … ,𝑀} (49) 

 

In the formulation (45)-(49), �̂�  =  {𝑋𝑗,�̂�|𝑗 ∈  𝐽𝐿[𝑐], 𝑐 =

1,… , 𝑁𝐽;  𝑘 = 1, . . . , 𝑁𝐽} comes from a factory solution of MP, 

and 𝐶 =  {𝐶𝑘,𝑖| 𝑘 = 1, . . . , 𝑁𝐽;  𝑖 = 1, . . . , 𝑀} are the vectors of 

the decision variables. The resulting formulation, shown by 

𝑀(𝐶, �̂�), consists of the variables C only, and the constraints of 

which are assigned the dual variables 𝛼 = {𝛼𝑘,𝑖 ≥ 0 | 𝑘 =

1, . . . , 𝑁𝐽; 𝑖 = 1, . . . , 𝑀} corresponding to constraints (46), 𝛽 =

{𝛽𝑘,𝑖 ≥ 0 | 𝑘 = 2, . . . , 𝑁𝐽; 𝑖 = 1, . . . , 𝑀} corresponding to 

constraints (47), and 𝛿 = {𝛿𝑘 = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 | 𝑘 = 1, . . . , 𝑁𝐽} 
corresponding to constraints (48), respectively. The dual 𝐷 =

(𝛼, 𝛽, 𝛿, �̂�) of 𝑀(𝐶, �̂�) is given in the formulation (50)-(57). 

 

Maximize ∑ ∑𝛼𝑘,𝑖 ∑ �̂�𝐽𝐿[𝑗],𝑘𝑃𝐽𝐿[𝑗],𝑖

𝑁𝐽

𝑗=1

𝑀

𝑖=1

𝑁𝐽

𝑘=1

+ ∑ ∑ 𝛽𝑘,𝑖

𝑀

𝑖=1

𝑁𝐽

𝑘=2

∑�̂�𝐽𝐿[𝑗],𝑘𝑃𝐽𝐿[𝑗],𝑖

𝑁𝐽

𝑗=1

 

(50) 

Subject to: 

𝛿𝑘 − 𝛼𝑘,1 ≤ 0     𝑘 ∈ {1, … , 𝑁𝐽} (51) 

𝛼1,𝑖 − 𝛼1,𝑖+1  −  𝛽2,𝑖 ≤ 0     𝑖 ∈ {1, … ,𝑀 − 1} (52) 

𝛼1,𝑀 − 𝛽2,𝑀 ≤ 0 (53) 

𝛼𝑘,𝑖 − 𝛼𝑘,𝑖+1 + 𝛽𝑘,𝑖 − 𝛽𝑘+1,𝑖 ≤ 0     𝑘

∈ {2, … , 𝑁𝐽 − 1}; 𝑖 ∈ {1, … ,𝑀 − 1} 

(54) 

𝛼𝑘,𝑀 + 𝛽𝑘,𝑀 − 𝛽𝑘+1,𝑀 ≤ 0     𝑘 ∈ {2, … , 𝑁𝐽 − 1} (55) 

𝛼𝑁𝐽,𝑖 − 𝛼𝑁𝐽,𝑖+1 + 𝛽𝑁𝐽,𝑖 ≤ 0     𝑖 ∈ {1, … ,𝑀 − 1} (56) 

𝛼𝑁𝐽,𝑀 + 𝛽𝑁𝐽,𝑀 ≤ 1 (57) 

 
If any factory in the solution obtained from the master 

problem comprises at least 1 job, the cuts are added to the master 

model for all factories as given below. 

 

for (g=1 to F) //g used for denoting the factories 

𝑧 ≥ ∑ ∑ 𝐴𝐽𝐿[𝑗],𝑃𝐿[𝑘]𝑋𝐽𝐿[𝑗],𝑃𝐿[𝑘],𝑔

𝑁𝐽

𝑘=1

𝑁𝐽

𝑗=1

+ ∑ ∑ 𝐵𝐽𝐿[𝑗],𝑃𝐿[𝑘]𝑋𝐽𝐿[𝑗],𝑃𝐿[𝑘],𝑔

𝑁𝐽

𝑘=2

𝑁𝐽

𝑗=1

 

endfor 

where z is a lower bound on the optimal solution value of 

𝑀(𝐶, 𝑋), 𝐴𝐽𝐿[𝑗],𝑃𝐿[𝑘] = ∑ �̂�𝑘,𝑖
𝑀
𝑖=1 𝑃𝐽𝐿[𝑗],𝑖 and 𝐵𝐽𝐿[𝑗],𝑃𝐿[𝑘] =

∑ �̂�𝑘,𝑖
𝑀
𝑖=2 𝑃𝐽𝐿[𝑗],𝑖.  

 

In each Benders iteration, F*F cuts (maximum) are inserted in 

this version (if each factory includes at least 1 job in the master 

problem-solution).  

 

3.1.3. Version 3 of the Model_1 Based Pure Benders 

Decomposition Algorithm 

In this version (represented by PB_Model1_V3), differently 

from PB_Model1_V2, the makespans are calculated separately 

for the factories to which at least 1 job is assigned in the master 

problem solution. The subproblem is solved only for the factory 

yielding the longest makespan and the cut is inserted into the MP 

only for the factory yielding the longest makespan. In this version, 

only one cut is subsequently inserted in each Benders iteration.  

 

After having obtained a job permutation from a factory solution 

of the master problem solution, the makespan is calculated by 

using a completion time matrix as proposed by Onwubolu and 

Davendra (2006). For illustrating the operating principle of the 

completion time matrix, let’s apply it to a 5-machine and 10-job 

problem. Processing times are given in Table 2. Suppose that the 
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job permutation of ith factory obtained from the master problem 

solution is π = {3, 5, 2, 1, 4}. 

 

 

Table 2. Processing times for a 10×5 example problem. 

 

Machine 
Job 

1 2 3 4 5 6 7 8 9 10 

1 5 7 4 3 6 7 5 3 6 8 

2 6 5 7 6 7 5 6 5 1 6 

3 7 8 3 8 5 8 7 8 7 4 

4 8 6 5 5 8 5 6 5 5 4 

5 4 4 8 7 3 7 7 8 8 2 

The completion time matrix is shown below with a makespan 

value of 58, which is the last entry in the matrix. 

 

[𝐶] =

[
 
 
 
4
11
14
19
27

10
18
23
31
34

17
23
31
37
41

22
29
38
46
50

25
35
46
51
58]

 
 
 

 

 

3.1.4. Version 4 of the Model_1 Based Pure Benders 

Decomposition Algorithm 

In this version (shown by PB_Model1_V4), similarly, with 

PB_Model1_V3, the makespan is calculated separately for the 

factories to which at least 1 factory is assigned in the master 

problem solution. The subproblem is solved only for the factory 

yielding the longest makespan and the cut obtained from the 

subproblem solution is inserted separately for all factories as is 

the case in PB_Model1_V2 (the same cut is applied to all 

factories). In this version, F cuts are subsequently inserted in each 

Benders iteration.  

 

3.2. Model_3 Based Pure Benders Decomposition 

Algorithms 

As will be seen in the Computation results section, the model 

called Model_3 has given the best performance among the models 

including the big M constraint. Therefore, 2 different Model_3 

based pure Benders decomposition algorithms are developed in 

this Section. As also underlined often previously, Model_2 was 

presented by Naderi and Ruiz (2010) as the model yielding the 

best performance. A separate pure Benders decomposition 

algorithm is also developed for Model_2. The master problem for 

the developed Model_2 consists of the Constraint sets (10), (11), 

(12), (13), (14), and (19). But this generated master model may 

also yield unfeasible solutions and also needs the feasibility cuts 

accordingly. The Model_2 based pure Benders decomposition 

algorithm is not included in the paper since it produces very bad 

performance when compared to the Model_3 based Benders 

algorithm. 

 
3.2.1. Version 1 of the Model_3 Based Pure Benders 

Decomposition Algorithm 

In a manner similar to PB_Model1_V1, in this version 

(represented by PB_Model3_V1), the subproblem is solved by 

fixing all of the decision variables obtained from the master model 

solutions in the subproblem. In this version, one large cut 

indicating the entire solution is inserted into master the problem 

in each Benders iteration. The master model consists of the 

Constraint sets (19) – (24) in the Benders algorithm of this model 

and the subproblem is the dual of the model given below. 

 
Minimize Cmax (58) 

 

Subject to: 

 

𝐶𝑗,𝑖  ≥  𝐶𝑗,𝑖−1 + 𝑃𝑗,𝑖      𝑗 ∈ {1, … , 𝑁};  𝑖 ∈ {1, … ,𝑀} (59) 

𝐶𝑗,𝑖  ≥  𝐶𝑘,𝑖 + 𝑃𝑗,𝑖 + 𝑏𝑖𝑔𝑀(�̂�𝑘,𝑗 − 1)   

𝑘 ∈ {0,1, … , 𝑁}, 𝑗 ∈ {1, … , 𝑁} | 𝑘 ≠ 𝑗;  𝑖 ∈ {1, … ,𝑀} 

(60) 

𝐶𝑚𝑎𝑥  ≥ 𝐶𝑗,𝑀      𝑗 ∈ {1, … , 𝑁} (61) 

𝐶𝑗,0 = 0     𝑗 ∈ {1, … , 𝑁} (62) 

𝐶0,𝑖 = 0     𝑖 ∈ {1, … ,𝑀} (63) 

𝐶𝑗,𝑖  ≥ 0     𝑗 ∈ {1, … , 𝑁};  𝑖 ∈ {1, … ,𝑀} (64) 

 

In the formulation (58)-(64), �̂�  =  {�̂�𝑘,𝑗|𝑘 ∈ {0,1, … , 𝑁}, 𝑗 ∈
{1, … , 𝑁}|𝑘 ≠ 𝑗} comes from the MP solution, and 𝐶 =
 {𝐶𝑘,𝑖| 𝑘 = 1, . . . , 𝑁𝐽;  𝑖 = 1, . . . , 𝑀} are the vectors of the decision 

variables. Note that there is no need for the decision variables 

�̂�  =  {�̂�𝑘,0|𝑘 ∈ {0,1, … , 𝑁}} in this formulation. The resulting 

formulation, shown by 𝑀(𝐶, �̂�), consists of the variables C only 

and the constraints of which are assigned the dual variables; 

𝛼 = {𝛼𝑗,𝑖 ≥ 0 |  𝑗 ∈ {1, … , 𝑁};  𝑖 ∈ {1, … ,𝑀} } for constraints set 

(59), 

𝛽 = {𝛽𝑗,𝑘,𝑖 ≥ 0 | 𝑗 ∈ {1, … , 𝑁};  𝑘 ∈ {0,1, … , 𝑁}|𝑘 ≠ 𝑗;  𝑖 ∈
{1, … ,𝑀}}  for constraints set (60), 

 𝛾 = {𝛾𝑗 ≥ 0 | 𝑗 ∈ {1, … , 𝑁} }  for constraint set (61),  

𝛿 = {𝛿𝑗 = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 | 𝑗 = 1, . . . , 𝑁} for constraints (62),  

𝜃 = {𝜃𝑖 = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 | 𝑖 = 1, . . . , 𝑀} for constraints (63), 

respectively.  

The dual 𝐷 = (𝛼, 𝛽, 𝛾, 𝛿, 𝜃, �̂�) of 𝑀(𝐶, �̂�) is given in the 

formulation (65)-(70). 

 

Maximize    ∑ ∑𝛼𝑗,𝑖𝑃𝑗,𝑖

𝑀

𝑖=1

𝑁

𝑗=1

+ ∑ ∑ ∑𝛽𝑗,𝑘,𝑖

𝑀

𝑖=1

𝑁

𝑗=1|𝑗≠𝑘

𝑁

𝑘=0

[𝑃𝑗,𝑖

+ 𝑏𝑖𝑔𝑀(�̂�𝑘,𝑗 − 1)] 

(65) 
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Subject to: 

 

∑𝛾𝑗 ≤

𝑁

𝑗=1

1 (66) 

𝛼𝑗,𝑖 − 𝛼𝑗,𝑖+1 − ∑ 𝛽𝑘,𝑗,𝑖

𝑁

𝑘=1|𝑘≠𝑗

+ ∑ 𝛽𝑗,𝑘,𝑖

𝑁

𝑘=0|𝑘≠𝑗

≤ 0      𝑗

∈ {1, … , 𝑁};  𝑖 ∈ {1, … ,𝑀} 

(67) 

𝛼𝑗,𝑀 − 𝛾𝑗 − ∑ 𝛽𝑘,𝑗,𝑀

𝑁

𝑘=1|𝑘≠𝑗

+ ∑ 𝛽𝑗,𝑘,𝑀

𝑁

𝑘=0|𝑘≠𝑗

≤ 0      𝑗

∈ {1, … , 𝑁} 

(68) 

𝛿𝑗 − 𝛼𝑗,1 ≤ 0      𝑗 ∈ {1, … , 𝑁} (69) 

𝜃𝑖 − ∑ 𝛽𝑗,0,𝑖 ≤ 0 

𝑁

𝑗=1

    𝑖 ∈ {1, … ,𝑀} (70) 

 

The model (master model) constantly generates a viable 

solution, which, in turn, means that 𝐷 = (𝛼, 𝛽, 𝛾, 𝛿, 𝜃, �̂�) is 

always feasible for a given �̂�, and for an optimal solution 
(𝛼, 𝛽, 𝛾, 𝛿, 𝜃) of the dual problem, one obtains the following 

Benders optimality cuts: 

 

𝑧 ≥ 𝑡𝑜𝑡𝑎𝑙 + ∑ ∑ 𝐴𝑘,𝑗𝑋𝑘,𝑗

𝑁

𝑗=1|𝑗≠𝑘

𝑁

𝑘=0

 

 

where z is a lower bound on the optimal solution value of 

𝑀(𝐶, 𝑋), 

𝑡𝑜𝑡𝑎𝑙 = ∑∑ �̂�𝑗,𝑖

𝑀

𝑖=1

𝑁

𝑗=1

𝑃𝑗,𝑖

+ ∑ ∑ ∑ �̂�𝑗,𝑘,𝑖𝑃𝑗,𝑖

𝑀

𝑖=1

𝑁

𝑘=0|𝑘≠𝑗

𝑁

𝑗=1

− ∑ ∑ ∑ �̂�𝑗,𝑘,𝑖𝑏𝑖𝑔𝑀

𝑀

𝑖=1

𝑁

𝑘=0|𝑘≠𝑗

𝑁

𝑗=1

 

𝐴𝑘,𝑗 = ∑�̂�𝑗,𝑘,𝑖𝑏𝑖𝑔𝑀

𝑀

𝑖=1

 

Using this result, we are now ready to present the following 

reformulation of 𝑀(𝐶, 𝑋), referred to as the master problem 

constructed by using the set PD of extreme points of 𝐷 = (𝐶, 𝑋) 

and shown as MP(PD) below: 

 

Minimize 𝑧 (71) 

Subject to:  

 

𝑧 ≥ 𝑡𝑜𝑡𝑎𝑙 + ∑ ∑ 𝐴𝑘,𝑗𝑋𝑘,𝑗

𝑁

𝑗=1|𝑗≠𝑘

𝑁

𝑘=0

 
(72) 

And, Constraint set (19) – (24) 

 
 

As the MP includes a large number of optimality cuts, it can 

be solved by using a cutting plane algorithm in practice, normally 

starting with MP(∅) with no optimality cuts (72) and generating 

the cuts on an as-needed basis. The algorithm usually stops after 

having solved a certain MP(P), where 𝑃 ⊂ 𝑃𝐷. 

 

3.2.2. Version 2 of the Model_3 Based Pure Benders 

Decomposition Algorithm 

In this version (represented by PB_Model3_V2), similarly, 

with PB_Model1_V3, the makespan is calculated separately for 

the factories to which at least 1 factory is assigned in the MP 

solution. The subproblem is run only for the factory yielding the 

longest (maximum) makespan and the cut for the master model is 

generated only for the jobs causing the maximum makespan and 

inserted to the master model. For example, consider a problem 

with N = 6 and F = 2, one of the possible solutions of MP is X0,1 

=X1,3 =X3,6 =X6,0 =X0,4 =X4,2 = X2,1 = X1,5 = X5,0 = 1; that is,{0, 3, 6, 

0, 4, 2, 1, 5, 0}. In this example, jobs 3 and 6 are allocated to 

factory 1 with this order {3,6} while the other jobs are assigned 

to factory 2 with the permutation or sequence {4, 2, 1, 5}. Once 

the makespans of the factories in the example by the makespan 

calculation method in PB_Model1_V3, let’s assume that the 2nd 

factory is the factory yielding the longest makespan. In this 

version, only the cut consisting of the jobs {4, 2, 1, 5} at the 

factory is generated and inserted into the master model. 

 

Similarly, the master model consists of the Constraint sets 

(19)-(24) in the Benders algorithm developed for this version. 

While modeling the subproblem, let’s assume that a list 

denominated JL holds the jobs assigned to the factory yielding the 

longest (maximum) makespan in the master model solution. Let’s 

start it with the position index. Let 0 be in the position 0 and total 

number of jobs except for 0 available in the JL list be NJ. For 

example, for the example above, JL= {0, 4, 2, 1, 5} and also NJ 

becomes equal to 4. The subproblem formed by the jobs in the JL 

list is the dual of the model, the primal of which is given below.  

 

Minimize 𝐶𝑚𝑎𝑥 (73) 

  

Subject to: 

 
 

𝐶𝐽𝐿[𝑗],𝑖  ≥  𝐶𝐽𝐿[𝑗],𝑖−1 + 𝑃𝐽𝐿[𝑗],𝑖      𝑗 ∈ {1, … , 𝑁𝐽};  𝑖

∈ {1, … ,𝑀} 
(74) 

𝐶𝐽𝐿[𝑗],𝑖  ≥  𝐶𝐽𝐿[𝑘],𝑖 + 𝑃𝐽𝐿[𝑗],𝑖 + 𝑏𝑖𝑔𝑀(�̂�𝐽𝐿[𝑘],𝐽𝐿[𝑗] − 1)   

𝑘 ∈ {0,1, … , 𝑁𝐽}, 𝑗 ∈ {1, … , 𝑁𝐽} | 𝑘 ≠ 𝑗;  𝑖 ∈ {1, … ,𝑀} 
(75) 

𝐶𝑚𝑎𝑥  ≥ 𝐶𝐽𝐿[𝑗],𝑀     𝑗 ∈ {1, … , 𝑁𝐽} (76) 

𝐶𝐽𝐿[𝑗],0 = 0     𝑗 ∈ {1, … , 𝑁𝐽} (77) 

𝐶0,𝑖 = 0     𝑖 ∈ {1, … ,𝑀} (78) 

𝐶𝐽𝐿[𝑗],𝑖  ≥ 0     𝑗 ∈ {1, … , 𝑁𝐽};  𝑖 ∈ {1, … ,𝑀} (79) 

 

In the formulation (73)-(79), �̂�  =  {�̂�𝐽𝐿[𝑘],𝐽𝐿[𝑗]|𝑘 ∈

{0,1, … , 𝑁𝐽}, 𝑗 ∈ {1, … , 𝑁𝐽}|𝑘 ≠ 𝑗} comes from the MP solution, 

and 𝐶 =  {𝐶𝐽𝐿[𝑘],𝑖| 𝑘 = 1, . . . , 𝑁𝐽;  𝑖 = 1, . . . , 𝑀} are the vectors of 

the decision variables. Note that there is no need for the decision 

variables �̂�  =  {�̂�𝐽𝐿[𝑘],0|𝑘 ∈ {0,1, … , 𝑁𝐽}} in this formulation. 

The resulting formulation, shown by 𝑀(𝐶, �̂�), consists of the 

variables C only, and the constraints of which are assigned the 

dual variables; In the formulation (73)-(79), �̂�  =  {�̂�𝐽𝐿[𝑘],𝐽𝐿[𝑗]|𝑘 ∈

{0,1, … , 𝑁𝐽}, 𝑗 ∈ {1, … , 𝑁𝐽}|𝑘 ≠ 𝑗} comes from the MP solution, 

and 𝐶 =  {𝐶𝐽𝐿[𝑘],𝑖| 𝑘 = 1, . . . , 𝑁𝐽;  𝑖 = 1, . . . , 𝑀} are the vectors of 

the decision variables. Note that there is no need for the decision 

variables �̂�  =  {�̂�𝐽𝐿[𝑘],0|𝑘 ∈ {0,1, … , 𝑁𝐽}} in this formulation. 

The resulting formulation, shown by 𝑀(𝐶, �̂�), consists of the 

variables C only, and the constraints of which are assigned the 

dual variables; 
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𝛼 = {𝛼𝐽𝐿[𝑗],𝑖 ≥ 0 |  𝑗 ∈ {1, … , 𝑁𝐽};  𝑖 ∈ {1, … ,𝑀} } for constraints 

set (74), 

𝛽 = {𝛽𝐽𝐿[𝑗],𝐽𝐿[𝑘],𝑖 ≥ 0 | 𝑗 ∈ {1, … , 𝑁𝐽};  𝑘 ∈ {0,1, … , 𝑁𝐽}|𝑘 ≠

𝑗;  𝑖 ∈ {1, … ,𝑀}}  for constraints set (75), 

 𝛾 = {𝛾𝐽𝐿[𝑗] ≥ 0 | 𝑗 ∈ {1, … , 𝑁𝐽} }  for constraint set (76),  

𝛿 = {𝛿𝐽𝐿[𝑗] = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 | 𝑗 = 1, . . . , 𝑁𝐽} for constraints (77),  

𝜃 = {𝜃𝑖 = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 | 𝑖 = 1, . . . , 𝑀} for constraints (78), 

respectively.  

The dual 𝐷 = (𝛼, 𝛽, 𝛾, 𝛿, 𝜃, �̂�) of 𝑀(𝐶, �̂�) is given by the 

following: 

Maximize    ∑ ∑𝛼𝑗,𝑖𝑃𝐽𝐿[𝑗],𝑖

𝑀

𝑖=1

𝑁𝐽

𝑗=1

+ ∑ ∑ ∑𝛽𝑗,𝑘,𝑖

𝑀

𝑖=1

𝑁𝐽

𝑗=1|𝑗≠𝑘

𝑁𝐽

𝑘=0

[𝑃𝐽𝐿[𝑗],𝑖

+ 𝑏𝑖𝑔𝑀(�̂�𝐽𝐿[𝑘],𝐽𝐿[𝑗] − 1)] 

 

(80) 

Subject to: 

 
 

∑𝛾𝐽𝐿[𝑗] ≤

𝑁𝐽

𝑗=1

1 (81) 

𝛼𝐽𝐿[𝑗],𝑖 − 𝛼𝐽𝐿[𝑗],𝑖+1 − ∑ 𝛽𝐽𝐿[𝑘],𝐽𝐿[𝑗],𝑖

𝑁𝐽

𝑘=1|𝑘≠𝑗

+ ∑ 𝛽𝐽𝐿[𝑗],𝐽𝐿[𝑘],𝑖

𝑁𝐽

𝑘=0|𝑘≠𝑗

≤ 0       

𝑗 ∈ {1, … , 𝑁𝐽};  𝑖 ∈ {1, … ,𝑀} 

(82) 

𝛼𝐽𝐿[𝑗],𝑀 − 𝛾𝐽𝐿[𝑗] − ∑ 𝛽𝐽𝐿[𝑘],𝐽𝐿[𝑗],𝑀

𝑁

𝑘=1|𝑘≠𝑗

+ ∑ 𝛽𝐽𝐿[𝑗],𝐽𝐿[𝑘],𝑀

𝑁

𝑘=0|𝑘≠𝑗

≤ 0      𝑗

∈ {1, … , 𝑁𝐽} 

(83) 

𝛿𝐽𝐿[𝑗] − 𝛼𝐽𝐿[𝑗],1 ≤ 0      𝑗 ∈ {1, … , 𝑁𝐽} (84) 

𝜃𝑖 − ∑ 𝛽𝐽𝐿[𝑗],0,𝑖 ≤ 0 

𝑁𝐽

𝑗=1

    𝑖 ∈ {1, … ,𝑀} (85) 

 

The model (master model) always generates a feasible 

solution. This, in turn, means that 𝐷 = (𝛼, 𝛽, 𝛾, 𝛿, 𝜃, �̂�) is always 

feasible for a given �̂�, and for an optimal solution (𝛼, 𝛽, 𝛾, 𝛿, 𝜃) 

of the dual problem, one obtains the following Benders optimality 

cuts: 

 

𝑧 ≥ 𝑡𝑜𝑡𝑎𝑙 + ∑ ∑ 𝐴𝑘,𝑗𝑋𝐽𝐿[𝑘],𝐽𝐿[𝑗]

𝑁

𝑗=1|𝑗≠𝑘

𝑁

𝑘=0

 

 

where z is a lower bound on the optimal solution value of 

𝑀(𝐶, 𝑋), 

𝑡𝑜𝑡𝑎𝑙 = ∑∑ �̂�𝐽𝐿[𝑗],𝑖

𝑀

𝑖=1

𝑁

𝑗=1

𝑃𝐽𝐿[𝑗],𝑖

+ ∑ ∑ ∑ �̂�𝐽𝐿[𝑗],𝐽𝐿[𝑘],𝑖𝑃𝐽𝐿[𝑗],𝑖

𝑀

𝑖=1

𝑁

𝑘=0|𝑘≠𝑗

𝑁

𝑗=1

− ∑ ∑ ∑ �̂�𝐽𝐿[𝑗],𝐽𝐿[𝑘],𝑖𝑏𝑖𝑔𝑀

𝑀

𝑖=1

𝑁

𝑘=0|𝑘≠𝑗

𝑁

𝑗=1

 

𝐴𝑘,𝑗 = ∑�̂�𝐽𝐿[𝑗],𝐽𝐿[𝑘],𝑖𝑏𝑖𝑔𝑀

𝑀

𝑖=1

 

 

 Using this result, we are now ready to present the following 

reformulation of 𝑀(𝐶, 𝑋), referred to as the master problem 

constructed by using the set PD of extreme points of 𝐷 = (𝐶, 𝑋) 

and shown as MP(PD) below: 

 

Minimize 𝑧 

 
(86) 

Subject to:  

 

𝑧 ≥ 𝑡𝑜𝑡𝑎𝑙 + ∑ ∑ 𝐴𝑘,𝑗𝑋𝐽𝐿[𝑘],𝐽𝐿[𝑗]

𝑁

𝑗=1|𝑗≠𝑘

𝑁

𝑘=0

 
(87) 

 

And, Constraint set (19) – (24) 
 

 

Since the MP includes a large number of optimality cuts, it can 

be solved by using a cutting plane algorithm in practice, normally 

starting with MP(∅) with no optimality cuts (87) and generating 

the cuts on an as-needed basis. The algorithm usually stops after 

having solved a certain MP(P), where 𝑃 ⊂ 𝑃𝐷. 

4. Hybrid Benders Decomposition 

Algorithm 

This section describes a hybrid algorithm that uses Benders 

Decomposition with a simple yet effectual enhancement 

mechanism entailing the generation of additional cuts by using 

LS3 algorithm (Ruiz, Pan, and Naderi (2019)) to help accelerate 

convergence. As also seen from the computational comparison 

section, the best performance is shown by PB_Model1_V1 (A 

single optimality cut inserting) among the pure Benders versions. 

Therefore, a hybrid Benders decomposition algorithm is 

developed based on PB_Model1_V1 in this section. In this hybrid 

Benders decomposition algorithm, one extra cut is generated and 

inserted into the MP (master problem) in each Benders iteration 

by using the local search algorithm denominated LS3 developed 

by Ruiz, Pan, and Naderi (2019). Different from the original LS3 

algorithm, the LS3 algorithm used in this paper has taken its 

preliminary solution from the master problem solution. The LS3 

algorithm does not oblige any algorithm parameters.  

 

The LS3 algorithm, if summarized in a few words, starts with 

taking the MP solution. Then, the factory generating the Cmax is 

selected. A job is arbitrarily extracted from this factory and 

inserted into all possible positions in all factories (including the 

one generating the makespan). If the best Cmax in all these 

insertions is better than the starting Cmax , the job is relocated and 

the search starts again from the beginning; otherwise, the job is 

reinserted back into its original position and the search continues. 

The procedure iterates until all jobs from the factory generating 
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the Cmax will have been tested (randomly and without repetition). 

The pseudo code of LS3 is given in the following. 

 

procedure LS3 (π= {π1, π2, ..., πF }) //It starts with taking the MP 

solution 

1: 𝐶max
∗ = max𝑓=1 

𝐹 {𝐶max(π1), {𝐶max(π2),… , {𝐶max(π𝐹) } 

2: 𝑓max = arg (𝐶max
∗ ) % (factory with the largest 𝐶max) 

3: Cnt = 0  

4: while (Cnt ≤ |π𝑓max
|) do % (all jobs in factory 𝑓max) 

5:   Randomly extract, without repetition, a job j from 

position k of π𝑓max
 

6:   for (f = 1to F) 

7:    Test job j in all possible positions of π𝑓 % (Taillard-

BSIG accelerations)  

8:        𝐶max
𝑓

 is the lowest 𝐶max obtained 

9:    pf is the position where the lowest 𝐶max obtained 

10:  endfor 

11:      𝑓min = arg (min𝑓=1 
𝐹 (𝐶max

𝑓
)) 

12:  if (𝐶max
𝑓

 < 𝐶max
∗  ) 

13:     Place job j at position pf of factory 𝑓min 

14:          𝐶max
∗ =

 max𝑓=1 
𝐹 {𝐶max(π1), {𝐶max(π2), … , {𝐶max(π𝐹) } 

15:         𝑓max = arg (𝐶max
∗ ) // (factory with the largest 𝐶max) 

16:   Cnt = 0 

17:  elseif 

18:   Return job j to position k of 𝑓max 

19:   Cnt = Cnt + 1 

20:  endif 

21: endwhile 

 

The hybrid Benders decomposition is an iterative algorithm 

generating optimality cuts (43) in each iteration based on an 

optimal MP solution �̂� and uses �̂� as an input to the LS3 to 

generate a neighbor solution �̂�𝐿S3, inducing an supplementary 

optimality cut inserted into the master problem. In the hybrid 

Benders algorithm, 2 cuts, one of which is generated from a 

previous master model problem solution and the other from the 

LS3 algorithm, are inserted to the master model in each Benders 

iteration. The pseudo-code of the proposed algorithm is given in 

the following. 

Input: Problem data, allowable optimality gap 𝜀 ≥ 0  

1. Set LB = -∞, UB = ∞ 

2: while (LB ≤ UB) do 

3:   Solve MP in order to obtain �̂� = {𝑋|𝑋 satisfies (2), (3),
and (9)}, and obtain solution value,     

           obj_master 

4.   if (LB < obj_master) 

5:    LB = obj_master; 

6:   endif  

7:      Solve SP depending on Constraint sets (31) – (39) with 

�̂�, obtain the solution value of SP, obj_sub 

8:   if (UB > obj_sub) 

9:     UB = obj_sub; 

10:  endif 

11:  Considering the MP solution (�̂�) as the initial solution of 

LP3, run the LS3 algorithm to get a new solution (�̂�𝐿S3) 

12:  Solve the SP depending on Constraint sets (31) – (39) with 

�̂�𝐿S3, obtain the solution value of SP,   

            obj_sub_LS3 

13:  if (UB > obj_sub_LS3) 

14:    UB = obj_sub_LS3; 

15:  endif 

16.     Insert the optimality cuts into the MP for the solutions �̂� 

and �̂�𝐿S3 //Inserting Constraint set (43) to MP for 

          both solutions 

17: endwhile  

18: Report the best solution found by the last MP solution 

5. Computational Results 

The experiments are conducted in three main stages. First, the 

mathematical models and automated Benders decomposition 

versions of these models (available within the software) are 

compared with each other.  The pure Benders algorithms proposed 

in the subsequent sub-section are compared with each other. Then 

the developed hybrid Benders decomposition algorithm was 

compared to the other methods.  The algorithm and its variants are 

coded in Visual C++, using CPLEX 12.7.1 as the solver. An Intel 

Core i5-2450M computer with a 2.5 GHz CPU and 4 GB memory 

was used. The tests are accomplished on 84 problem instances of 

the distributed permutation flowshop scheduling problem 

available at http://soa.iti.es. The data used in the experiments are 

taken from the data file named DPFSP_Small. The problem 

instances in the DPFSP_Small data file has been demonstrated 

with 4 main indices. For instance, such as I_2_4_2_1 and 

I_4_16_5_1. The numbers here indicate the dataset number {1, 2, 

3, 4, 5} and how many factories {2, 3, 4}, how many jobs {4, 6, 

8, 10, 12, 14, 16}, and how many machines {2, 3, 4, 5} are 

available in the dataset, respectively. In the experiments, the 

datasets whose last index is 1 in the data file named DPFSP_Small 

are solved. Furthermore, all models are solved under a limitation 

of 1800 seconds. In the execution of the variants of the Benders 

algorithm, the presolver of the CPLEX is deactivated, whereas, in 

the solution of the mathematical models, this decision is left to the 

CPLEX solver. Deterministic mode with four threads is used in 

the CPLEX solver in all exact algorithms runs. 

5.1. Performance Comparisons of the 

Mathematical Models 

In this stage, the four models given in Section 2.1 are 

evaluated with the automatic Benders decomposition algorithm 

obtainable as ready-to-use within the CPLEX. The automatic 

Benders decomposition algorithm of the CPLEX (shown by 

ABD) is applied to 4 mathematical models given in Section 2.1. 

Among these four models, only Model_1 is able to produce 

solutions with the automatic Benders decomposition algorithm. 

The other 3 models are unable to produce solution with the 

automatic Benders algorithm. The summarized results are shown 

in Table 3 and the results are shown in Figure 1 to facilitate the 

reading of the data given in Table 3, as well. As seen from Table 

3 and Figure 1, maximum number of instances are solved 

optimally by Model_1 (56 instances), Model_3 (54 instances), 

Model_2 (53 instances), Model_1_ABD (48 instances), and 

Model_4 (46 instances), respectively. In terms of average time, 

the Model_3 yielded the lowest time average with 56.40 (average 

of the times of 54 optimal solutions). 46 instances are also solved 

optimally by all methods. The instances solved jointly are solved 

by Model_3 in the shortest average period (5.91 seconds on 

average). Model_3 is followed by Model_2, Model_1, 

Model_1_ABD, and Model 4 with 6.81, 24.91, 49.69, and 109.25 

seconds in average, respectively. The worst performance is given 

by Model_4 with 109.25 seconds on average. In terms of 

suboptimal solutions gaps, Model_1 yielded the lowest gap value 

with 9.13 on average. The best performance is given by Model_1 

http://soa.iti.es/
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with a gap average of 9.48 in 24 common instances that cannot be 

solved optimally. Model_1 is followed by Model_1_ABD, 

Model_3, Model_2, and Model_4 with the gap averages of 23.45, 

25.83, 27.60, and 30.60, respectively. The maximum best integer 

solution is yielded by Model_1 with 82 solutions. Model_1 is 

followed by Model_3, Model_2, Model_1_ABD, and Model_4 

with 71, 67, 61, and 58 solutions, respectively. If we consider all 

performance values, Model_3 is given better performance 

compared to Model_2 and it can be evidently said that the worst 

performance is given by Model_4 among 4 models. It is not 

possible to make a definitive distinction as to whether Model_1 

or Model_3 is the best. Moreover, different comparisons can be 

made within Model_3 by using different sub tour elimination 

constraints available in the literature. 

5.2. Performance Evaluation of the Pure Benders 

Decomposition Algorithms   

In this stage, 4 different pure Benders decomposition 

algorithms generated from Model_1 and 2 different Benders 

decomposition algorithms generated from Model_3 are 

compared. Summary results are shown in Table 4 and the results 

are also shown in Figure 2 to facilitate the reading of the data 

given in Table 4. As seen from Table 4 and Figure 2, maximum 

optimal solutions are found by PB_Model1_V1 with 54 solutions. 

PB_Model1_V1 was followed by PB_Model1_V3, 

PB_Model3_V1, PB_Model3_V2, PB_Model1_V2, and 

PB_Model1_V4 with 51, 35, 35, 30, and 30 optimal solutions, 

respectively. 29 common instances can be solved optimally by all 

6 methods. The instances solved jointly are solved in the shortest 

time by PB_Model3_V1 with an average time of 9.94; moreover, 

30 widespread instances cannot be solved optimally by all 6 

methods. The lowest average gap value is yielded by 

PB_Model1_V1 with 39.06 in 30 instances that cannot be solved 

jointly. PB_Model1_V1 yields the highest average lower bound 

and lowest upper bound values among the 4 Model_1 based 

Benders decomposition algorithm version for the 30 instances that 

cannot be solved jointly. PB_Model3_V1 and PB_Model3_V2 

models do not succeed in raising the lower bound that cannot be 

solved optimally and the gap values in the instances that cannot 

be solved by them optimally are 100%. On the other hand, the 

shortest average solution time is reached by these two models 

(PB_Model3_V1 and PB_Model3_V2) in the instances they are 

able to solve optimally. As a general interpretation, it can be said 

that PB_Model1_V1 is the most attractive Benders algorithm 

since it can solve maximum number of examples optimally and 

also yields the lowest average gap value in the instances that 

cannot be solved optimally. 

 

5.3. Performance of the proposed hybrid Benders 

decomposition algorith 

In this stage, the results of the proposed hybrid Benders 

decomposition algorithm are given. As seen from Table 5 and 6, 

the proposed hybrid Benders decomposition algorithm solves 75 

instances optimally and in 273.68 seconds on average, except for 

9 instances (data numbers 25, 52, 53, 54, 55, 56, 80, 83, and 84). 
Average gap values of 9 instances that cannot be solved by it 

optimally are calculated to be 22.72. If we include the results of 

the other 11 models given in Tables 3 and 4 in the comparison, it 

can be easily said that the proposed hybrid Benders 

decomposition algorithm has given the most effective 

performance among 12 models. We also developed and tested 

various versions of the Pareto cuts for the proposed hybrid 

Benders decomposition algorithm. Since the results were much 

worse in terms of performance, we did not include them in the 

paper. Besides, since the hybrid Benders decomposition algorithm 

was deficient to optimally solve problem instances larger than 16 

jobs, we also completed the experiments here and we also did not 

add the results for the big problem instances to the paper. 

Although it is not very convenient to compare any exact 

solution method directly with any approximation algorithm, 

ultimately, the results obtained by the hybrid Benders 

decomposition algorithm are compared with the results of a 

recently published state-of-the-art heuristic for solving this 

problem, namely the iterated greedy algorithm of Ruiz et al. 

(2019), in terms of the value of the solutions determined. It is seen 

that the results obtained for 4 problem instances are better than 

the best-known solutions given in Ruiz et al. (2019) available at 

http://soa.iti.es. The mentioned problem instances are 

I_2_16_5_1, I_3_16_3_1, I_3_16_5_1 and I_4_16_4_1. The 

previous best-known solutions for problem instances mentioned 

are 526, 340, 453 and 323, respectively, while the new best-found 

solutions are 523, 339, 451, and 319, respectively. The 

corresponding Gantt chart for these instances is presented in 

Figure 3-6. 

 
 Table 3. Summarized comparisons of the mathematical models and ABD. 

 
General Statistics Model_1 Model_2 Model_3 Model_4 Model_1_ABD 

Optimal Solution 
Proven 56 53 54 46 48 

Avg. Time 86.46 67.69 56.40 109.25 81.24 

Common instances being 

optimally solved by five 

methods (46 instances) 

Avg. Time 24.91 6.81 5.91 109.25 

 

 

49.69 

Suboptimal Solution 
Feasible 28 31 30 38 36 

Avg. Gap% 9.13 27.99 27.36 29.91 10.57 

Common instances not 

being optimally solved by 

five methods (24 

instances) 

Avg. Gap% 9.48 27.60 25.83 30.60         23.45 

Number of a best integer solution 82 67 71 58 61 

http://soa.iti.es/
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Figure 1. Summarized comparisons of the mathematical models and ABD. 
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Table 4. Summarized comparisons of the pure Benders decomposition models. 

 
General Statistics PB_Model1_V1 PB_Model1_V2 PB_Model1_V3 PB_Model1_V4 PB_Model3_V1 PB_Model3_V2 

Optimal 

Solution 

Proven 54 30 51 30 35 35 

Avg. 

Time 
393.70 134.37 460.52 121.77 41.83 34.41 

Avg. 

Iteration 
71.43 82.73 420.69 119.56 292.02 304.57 

Common 

instances 

being 

optimally 

solved by six 

methods (29 

instances) 

Avg. 

Time 
35.40 92.68 136.92 77.30 9.94 11.43 

Avg. 

Iteration 
49.96 76.13 224.75 105.62 144.37 163.93 

Suboptimal 

Solution 

Feasible 30 54 33 54 49 49 

Avg. 

Gap% 
43.25 25.54 40.39 28.66 100 100 

Avg. 

Iteration 
22.18 179.68 383.75 260.62 4676.91 5229.12 

Avg. 

Lower 

Bound 

258.63 292.96 247.67 278.24 0 0 

Avg. 

Upper 

Bound 

449.18 407.57 419.39 406.81 404 400.97 

Common 

instances not 

being 

optimally 

solved by six 

methods (30 

instances) 

Avg. 

Gap% 
39.06 43.25 41.32 45.35 100 100 

Avg. 

Iteration 
22.18 90.59 365.36 104.59 4766.05 5501.90 

Avg. 

Lower 

Bound 

258.63 277.31 249.81 253.04 0 0 

Avg. 

Upper 

Bound 

449.18 465.95 430.90 474.86 438.09 435.72 

Number of 

Best Bounds 

Highest 

Lower 

Bound 

63 42 55 38 35 35 

Lowest 

Upper 

Bound 

56 31 58 34 40 41 
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Figure 2. Summarized comparisons of the pure Benders decomposition models. 
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Table 5. Results of the proposed hybrid Benders decomposition algorithm. 

 

Data No 
Number of 

Machines 

Number 

of Jobs 

Number of 

Factories 

Lower 

Bound 

Upper 

Bound 
Gap% 

Number of 

Iterations 

Cpu 

Time 

1 2 4 2  112  112  0.00 8  1.60 

2 3 4 2  219  219  0.00 9  8.38 

3 4 4 2  267  267  0.00 9  1.24 

4 5 4 2  337  337  0.00 12  1.62 

5 2 6 2  184  184  0.00 10  2.64 

6 3 6 2  274  274  0.00 18  5.44 

7 4 6 2  323  323  0.00 12  2.58 

8 5 6 2  386  386  0.00 26  8.90 

9 2 8 2  188  188  0.00 11  6.65 

10 3 8 2  341  341  0.00 21  14.29 

11 4 8 2  364  364  0.00 27  11.77 

12 5 8 2  468  468  0.00 42  28.69 

13 2 10 2  345  345  0.00 18  117.55 

14 3 10 2  360  360  0.00 35  17.56 

15 4 10 2  421  421  0.00 31  5.52 

16 5 10 2  452  452  0.00 64  37.75 

17 2 12 2  354  354  0.00 20  34.79 

18 3 12 2  431  431  0.00 26  30.73 

19 4 12 2  423  423  0.00 63  104.72 

20 5 12 2  538  538  0.00 87  601.19 

21 2 14 2  474  474  0.00 12  38.35 

22 3 14 2  514  514  0.00 25  304.37 

23 4 14 2 458  458  0.00 66  500.89 

24 5 14 2  536  536  0.00 71  752.70 

25 2 16 2  507  569  10.89 11 1800 

26 3 16 2  489  489  0.00 56  1159.95 

27 4 16 2 585 585  0.00 21 812.12 

28 5 16 2 523 523  0.00 45  1798.15 

29 2 4 3  139  139  0.00 11  0.42 

30 3 4 3  197  197  0.00 12  0.36 

31 4 4 3  263  263  0.00 11  0.46 

32 5 4 3  390  390  0.00 9  0.78 

33 2 6 3  161  161  0.00 12  0.51 

34 3 6 3  222  222  0.00 14  0.91 

35 4 6 3  249  249  0.00 19  1.04 

36 5 6 3  351  351  0.00 15  0.93 

37 2 8 3  210  210  0.00 18  2.04 

38 3 8 3  271  271  0.00 25  3.26 

39 4 8 3  343  343  0.00 33  6.08 

40 5 8 3  344  344  0.00 28  3.19 

41 2 10 3  208  208  0.00 29  23.46 

42 3 10 3  270  270  0.00 35  16.08 
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Table 6. Results of the proposed hybrid Benders decomposition algorithm (continued). 

 

Data No 
Number of 

Machines 

Number 

of Jobs 

Number of 

Factories 

Lower 

Bound 

Upper 

Bound 
Gap% 

Number of 

Iterations 

Cpu 

Time 

43 4 10 3  331  331  0.00 41  44.64 

44 5 10 3  338  338  0.00 37  14.11 

45 2 12 3  215  215  0.00 23  149.36 

46 3 12 3  336  336  0.00 57  648.67 

47 4 12 3  357  357  0.00 44  376.24 

48 5 12 3  458  458  0.00 85  1568.31 

49 2 14 3 225 225  0.00 16  753.86 

50 3 14 3 324 324  0.00 25  1545.62 

51 4 14 3 383 383  0.00 41  856.40 

52 5 14 3  392  463  15.33 30 1800.02 

53 2 16 3  260  392  33.67 11 1800.01 

54 3 16 3 339  348 2.58 30 1800.02 

55 4 16 3  338  481  29.73 23 1800.02 

56 5 16 3  451  462  2.38 20 1800.03 

57 2 4 4  164  164  0.00 14  0.87 

58 3 4 4  229  229  0.00 12  0.73 

59 4 4 4  251  251  0.00 6  0.21 

60 5 4 4  248  248  0.00 15  0.56 

61 2 6 4  164  164  0.00 15  1.48 

62 3 6 4  227  227  0.00 14  0.67 

63 4 6 4  262  262  0.00 29  3.23 

64 5 6 4  309  309  0.00 18  1.44 

65 2 8 4  187  187  0.00 22  4.10 

66 3 8 4  213  213  0.00 39  7.50 

67 4 8 4  326  326  0.00 31  5.05 

68 5 8 4  359  359  0.00 22  4.43 

69 2 10 4  155  155  0.00 29  10.34 

70 3 10 4  219  219  0.00 33  9.70 

71 4 10 4  346  346  0.00 47  15.71 

72 5 10 4  327  327  0.00 85  96.19 

73 2 12 4  183  183  0.00 23  51.47 

74 3 12 4  237  237  0.00 69  801.38 

75 4 12 4  290  290  0.00 77  364.45 

76 5 12 4  411  411  0.00 110  103.43 

77 2 14 4 235 235  0.00 24  962.26 

78 3 14 4 303 303  0.00 28  1658.01 

79 4 14 4  357  357  0.00 63  1355.33 

80 5 14 4  390  399  2.26 57 1800.02 

81 2 16 4 295 295  0.00 11  1558.69 

82 3 16 4 294 294  0.00 23  1081.95 

83 4 16 4  319  328  2.74 25 1800.02 

84 5 16 4  304  457  33.48 24 1800.05 
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Figure 3. Gantt chart of the new best solution obtained by the Hybrid Benders Algorithm for instance I_2_16_5_1. 
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Figure 4. Gantt chart of the new best solution obtained by the Hybrid Benders Algorithm for instance I_3_16_3_1. 
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Figure 5. Gantt chart of the new best solution obtained by the Hybrid Benders Algorithm for instance I_3_16_5_1. 
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Figure 6. Gantt chart of the new best solution obtained by the Hybrid Benders Algorithm for instance I_4_16_4_1. 
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6. Conclusion 

The distributed permutation flowshop scheduling problem 

(DPFSP) has in recent times occurred as a generalization of the 

regular flowshop scheduling problem where several factories are 

available and accessible for dispensation of the jobs. The DPFSP 

dealing with real-life applications has attracted the attention of 

researchers for more or less a decade. The only exact method on 

this problem that minimizes makespan is that of Naderi and Ruiz 

(2010), which presents 6 different mathematical models for the 

solution of the problem. The best performance was given by the 

position-based distributed permutation flowshop scheduling 

model and minimal sequence-based distributed permutation 

flowshop scheduling model among these models. In addition to 

these two best models, in this paper, 2 new models are developed 

by inspiring the multiple-traveling salesman problem (mTSP) 

formulations (Bektas (2006)). The new models mentioned are 

developed by inspiring mTSP-assignment based integer 

programming formulation and mTSP-flow-based formulation, 

respectively. 4 different Benders decomposition algorithms are 

developed based on the permutation flowshop scheduling model 

and 2 different Benders decomposition by using the model 

developed by inspiring mTSP-assignment based integer 

programming formulation. In addition to these newly developed 

8 different exact methods, a hybrid Benders decomposition 

algorithm is developed by using the permutation flowshop 

scheduling model and LS3 local search algorithm (Ruiz, Pan, and 

Naderi (2019)). All of the existing and new exact methods are 

compared with each other and the automatic Benders 

decomposition algorithm characteristic available ready-to-use in 

the CPLEX software by using 84 problem instances. The 

proposed mTSP-assignment based integer programming 

formulation based mathematical model has given superior 

performance in terms of all performance criteria than the minimal 

sequence-based distributed permutation flowshop scheduling 

stated to be giving the best results by Naderi and Ruiz (2010). In 

addition, the hybrid Benders decomposition algorithm developed 

by hybridizing the permutation flowshop scheduling model and 

LS3 local search algorithm has outperformed compared to the 

other 11 models by solving 75 out of 84 problem instances 

optimally under a time limitation of 1800 seconds. In this paper, 

4 new best solutions are also indentified for the DPFSP. The 

results obtained in this paper encourage the use of such a strategy 

in solving other variants of the DPFSP, such as non-idle and no-

wait DPFSP with or without setup times. 
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