
Avrupa Bilim ve Teknoloji Dergisi

Sayı 23, S. 126-148, Nisan 2021

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

No. 23, pp. 126-148, April 2021

Copyright © 2021 EJOSAT

Research Article

http://dergipark.gov.tr/ejosat 126

A Hybrid Benders Decomposition Algorithm and New Models for the

Distributed Permutation Flowshop Scheduling Problem

Hanifi Okan Isguder1*, Alper Hamzadayı2

1* Dokuz Eylul University, Faculty of Science, Departmant of Statistics, Izmir, Turkey, (ORCID: 0000-0002-5188-856X), okan.isguder@deu.edu.tr
2 Van Yuzuncu Yil University, Engineering Faculty, Departmant of Industrial Engineering, Van, Turkey, (ORCID: 0000-0003-4035-2775), alperhamzadayi@yyu.edu.tr

(First received 21 October 2020 and in final form 24 February 2021)

(DOI: 10.31590/ejosat.814129)

ATIF/REFERENCE: Isguder, H. O., & Hamzadayi, A. (2021). A Hybrid Benders Decomposition Algorithm and Models for the

Distributed Permutation Flowshop Scheduling Problem. European Journal of Science and Technology, (23), 126-148.

Abstract

The distributed permutation flowshop scheduling problem (DPFSP) is a generalization of the regular flowshop scheduling problem

where several factories are accessible for processing the jobs. In this paper, two new mathematical models are developed by deriving

inspiration from the formulations developed for the multiple-traveling salesman problem (mTSP), and six different pure Benders

decomposition algorithms are developed based on different mathematical model formulations. In addition, a hybrid Benders

decomposition algorithm is developed through the best performed mathematical. Nine newly developed exact methods are compared

in detail with each other, the best mathematical models given by Naderi and Ruiz (2010) and an automatic Benders decomposition

algorithm by using the 84 problem instances available in the literature. The consequences of the experiment performed for the

comparison of all existing and new exact algorithms have revealed that the proposed hybrid Benders decomposition algorithm has

outperformed considerably when compared to the other methods. In this paper, 4 new best solutions are identified for the DPFSP.

Keywords: Distributed flowshop problem, Mixed integer linear programming, Benders decomposition algorithm, LS3 local search

procedure.

Dağıtılmış Permütasyon Akış Tipi Atölye Çizelgeleme Problemi için

Hibrit Benders Ayrıştırma Algoritması ve Yeni Modeller

Öz

Dağıtılmış permütasyon akış tipi çizelgeleme problemi (DPATÇP), işleri işlemek için birkaç fabrikanın mevcut olduğu akış tipi

çizelgeleme probleminin bir genellemesidir. Bu çalışmada, çoklu gezgin satıcı problemi (ÇGSP) için geliştirilen modellerden

esinlenilerek iki yeni matematiksel model ve farklı matematiksel modellere dayalı olarak altı farklı saf Benders ayrıştırma algoritmaları

geliştirilmiştir. Ayrıca, en iyi performansı sağlayan matematiksel model aracılığıyla hibrit bir Benders ayrıştırma algoritması

geliştirilmiştir. Yeni geliştirilen dokuz kesin çözüm yöntemi, Naderi ve Ruiz (2010) tarafından önerilen en iyi matematiksel modeller

ve otomatik Benders ayrıştırma algoritması ile literatürde mevcut olan 84 problem seti kullanılarak karşılaştırılmıştır. Tüm mevcut ve

yeni kesin çözüm algoritmaların karşılaştırılması için gerçekleştirilen deneyin sonuçları, önerilen hibrit Benders ayrıştırma

algoritmasının diğer yöntemlere kıyasla önemli ölçüde daha iyi performans gösterdiğini ortaya koymuştur. Bu makalede, DPATÇP için

4 yeni en iyi çözüm saptanmıştır.

Anahtar Kelimeler: Dağıtılmış akış tipi problem, Karışık tamsayı doğrusal programlama, Benders ayrıştırma algoritması, LS3 yerel

arama prosedürü.

* Corresponding Author: okan.isguder@deu.edu.tr

http://dergipark.gov.tr/ejosat
mailto:okan.isguder@deu.edu.tr
mailto:alperhamzadayi@yyu.edu.tr

European Journal of Science and Technology

e-ISSN: 2148-2683 127

1. Introduction

Machine scheduling problems have been extensively studied

in the literature for more than 60 years beginning from Johnson's

first study being conducted (Johnson (1954)). Framinan, Leisten,

and Ruiz (2014), McKay, Pinedo and Webster (2002) and Pinedo

(2016) emphasized and discussed the importance of the optimized

scheduling in detail and in depth. The flowshop scheduling

problem is one of the most studied versions of the scheduling

problem in the literature. In a flowshop problem, the machines on

the production floor are arranged in series and the jobs go through

all machines in the order determined similar to the mentioned

way. Each job has a known amount of processing time at each

machine, meaning a job cannot be processed on the next machine

unless processed completely on the previous one. The machines

cannot process more than one job at the same time and no

preemption is allowed, for example, it is not possible to interrupt

the jobs once started at any machine. The most commonly studied

objective in the flowshop literature is the minimization of the

maximum completion time called makespan. Detailed literature

reviews on flowshop scheduling problem can be found in

Fernandez-Viagas, Ruiz, and Framinan (2017), Framinan, Gupta,

and Leisten (2004), Gupta and Stafford (2006), Hejazi and

Saghafian (2005), Reisman, Kumar, and Motwani (1997), and

Ruiz and Maroto (2005). The flowshop problem of a makespan

criterion is NP-Complete in the strong sense (Garey, Johnson, and

Sethi (1976)).

The multi factory environment has a critical significance in

today's centralized globalized economy (Chan et al. (2006); Deng

and Wang (2017); Jia et al. (2007)). Consequently, the multi

factory production scheduling environment, the so-called

distributed scheduling problem, has drawn increasingly more

attention in recent years (Giovanni and Pezzella (2010); Gupta

and Stafford (2006); Ying et al. (2017)). The distributed

permutation flow shop scheduling problem (DPFSP), one of the

distributed scheduling problem types, is a generalization of the

conventional permutation flow shop scheduling problem (PFSP).

In the DPFSP, a set of jobs must be processed at a number of

identical factories, and each factory is equipped with a series of

identical machines arranged as a flowshop. Which job will be

produced and the order of the jobs to be produced at each factory

must be decided simultaneously according to a given performance

measure.

The primary study for the DPFSP was carried out by Naderi

and Ruiz (2010) and no other study is available as a precise

solution method in the current literature. In the mentioned study,

Naderi and Ruiz (2010) presented six different linear

programming models. The best 2 performances were shown by

the minimal sequence-based distributed permutation flowshop

scheduling model and position-based distributed permutation

flowshop scheduling model, respectively, among these 6 different

linear programming models. In this study, Naderi and Ruiz (2010)

also proposed two factory assignment rules together with 14

heuristics based on dispatching rules, NEH method (Nawaz,

Enscore, and Ham (1983)), and a variable neighborhood decent

method (VND). As revealed by computational and statistical

analysis, the NEH based heuristics with two factory assignment

rules (denoted by NEH1 and NEH2, respectively) and the VND

with two acceptance criteria (referred to as VNDa and VNDb,

respectively) were the top four effective heuristics. Numerous

heuristics and metaheuristics have been also proposed for solving

the DPFSP by minimizing the makespan criterion since the first

study conducted by Naderi and Ruiz (2010). Liu and Gao (2010)

presented an electromagnetism metaheuristic (EM) by combining

numerous local search neighborhoods. They were able to improve

151 best-known solutions out of 720 large instances presented in

Naderi and Ruiz (2010) but involving a significantly larger CPU

time. An improved version of NEH2 of Naderi and Ruiz (2010)

heuristic by using a novel insertion rule was presented by Gao and

Chen (2011a). In the same year, a hybrid genetic algorithm (HGA)

with an enhanced local search method was put forward by Gao

and Chen (2011b). A revised VND by hybridizing the VND

method and improved NEH heuristic was proposed by Gao et al.

(2012). A tabu search (TS) algorithm based on exchanging sub-

sequences between factories to generate neighboring solutions

was presented by Gao, Chen, and Deng (2013). In the same year,

a modified iterated greedy (MIG) method was put forward by Lin,

Ying, and Huang (2013). They obtained much better results than

the HGA and TS with greatly reduced CPU time by applying

MIG. Once more, in the same year, an estimation of distribution

algorithm (EDA) that uses explicit probability distributions in the

search process was proposed by Wang et al. (2013). A scatter

search algorithm (called SSNR) was presented by Naderi and

Ruiz (2014). They deduced that the SSNR was a clear winner

against the HGA, MIG, EM, TS, VNDa, VNDb, and VND (B&B).

A hybrid immune algorithm (HIA) was proposed by Xu et al.

(2014). The authors claimed that the HIA improved 585 out of 720

instances of Naderi and Ruiz (2010). A bound-search iterated

greedy (BSIG) that incorporates several different local search

procedures was proposed by Fernandez-Viagas and Framinan

(2015). It was compared to the EDA, IG, and best methods

presented in Naderi and Ruiz (2010). The results provided show

a clear superiority of the BSIG over three other methods tested.

The authors also improved 263 of the original 720 best-known

solutions. More recently, a two-stage iterated greedy algorithm

(IG2S) was presented by Ruiz, Pan, and Naderi (2019). The

authors obtained 497 new upper bounds and average Relative

Percentage Deviations were reduced by 60% when compared to

BSIG and 81% when compared to SSNR.

As mentioned above, there is no study as an exact solution

method for the DPFSP problem, except for the six linear

programming model proposed by Naderi and Ruiz (2010). The

best performance was given by the position-based distributed

permutation flowshop scheduling model and minimal sequence-

based distributed permutation flowshop scheduling model among

these six models presented by Naderi and Ruiz (2010). In addition

to these two best models of Naderi and Ruiz (2010), in this paper;

two new models are developed based on the multiple-traveling

salesman problem (mTSP) formulations available in Bektas

(2006). After detecting the most effective existing and new

mathematical formulations, these are the permutation flowshop

scheduling model and the model developed through the multiple-

traveling mTSP-assignment based integer programming

formulation, different benders algorithms are developed using

these models. Four different Benders decomposition algorithms

are developed and tested based on the permutation flowshop

scheduling model. The proposed pure benders algorithm through

the permutation flowshop scheduling model follows the 4

different strategies that are given below.

1. Upon having solved the master model, the entire solution

obtained from the master model solution (all decision

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 128

variables taking the value of 1) is fixed in the subproblem.

One large optimality cut is obtained from the subproblem

solution and this optimality cut is added to the master model

to be solved in the next Benders iteration.

2. After having solved the master model, the master model

solution is decomposed according to the factories to which at

least 1 job is assigned. Then, separate cuts are obtained for

each solution and afterward, each optimality cut obtained is

added to the master problem separately for all factories for

the subsequent master problem solution.

3. After having solved the master model, the makespans are

calculated disjointedly for the factories to which at least 1 job

is assigned in the master problem solution. The subproblem

is solved only for the factory yielding the longest makespan

and a single optimality cut is inserted into the master problem

only for the factory yielding the longest makespan.

4. After having solved the master model, the makespan is

calculated separately for the factories to which at least 1

factory is assigned in the master problem solution. The

subproblem is solved only for the factory yielding the longest

makespan and the optimality cut obtained from the

subproblem solution is inserted separately for all factories.

Also, two different pure Benders decomposition algorithms are

developed and tested based on the mTSP-assignment based

integer programming formulation. The mTSP-assignment based

integer programming formulation is structurally only suitable for

the first and third the cut adding strategies mentioned above. In

addition to these newly developed eight different exact methods,

a hybrid Benders decomposition algorithm is developed by

hybridizing the LS3 local search algorithm with the strategy one

based pure Benders algorithm that is developed over the

permutation flowshop scheduling model, in order to be able to

accelerate the convergence of the Benders algorithm. Twelve

different exact solution methods are compared with each other by

using 84 problem instances and also the automatic Benders

decomposition algorithm available ready-to-use in the CPLEX

software. Experimental results demonstrated that the proposed

hybrid algorithm is superior to all of the existing and new methods

in terms of its efficiency and effectiveness. In this paper, 4 new

best solutions are also determined for the DPFSP.

The remainder of this paper is structured as follows. Two new

linear programming models developed by inspiring by the mTSP

and the best two linear programming models put forward by

Naderi and Ruiz (2010) are given in Section 2. Six different

Benders decomposition algorithms developed are given in

Section 3 and also the proposed hybrid Benders decomposition

algorithm in Section 4. Computational results are presented in

Section 5, followed by conclusions in Section 6.

2. Linear Programming Models

In this Section, the most performant two mathematical given

in Naderi and Ruiz (2010) are presented and also two new models

are developed by inspiring two different mTSP formulations.

Before presenting each model, we initiate by informing about the

parameters and indices employed. The common parameters and

indices for all six proposed models are defined in Table 1.

The objective function for all models is makespan

minimization:

Objective: Minimize Cmax (1)

2.1. Position-based Linear Programming Model

Six models were proposed in Naderi and Ruiz (2010) and the

following model is reported as the model giving the 2nd best

performance in Naderi and Ruiz (2010) and called the model

number 3 in their paper. In this paper, this model is demonstrated

as Model_1. In this model, the decision variables given below

have been used:

Ck,i,f  Continuous variable representing the completion time of

the job in position k on machine i at factory f .

Xj,k,f  Binary variable that takes value 1 if job j occupies position

k in factory f , and 0 otherwise.

The Model_1 is a position-based distributed permutation

flowshop scheduling model and its mathematical model is given

in detail below.

Objective function: Minimize Cmax (Equation 1)

Subject to:

 ∑ ∑ 𝑋𝑗,𝑘,𝑓 = 1 𝐹
𝑓=1

𝑁
𝑘=1 𝑗 ∈ {1, … , 𝑁} (2)

 ∑ ∑ 𝑋𝑗,𝑘,𝑓 = 1 𝐹
𝑓=1

𝑁
𝑗=1 𝑘 ∈ {1, … , 𝑁} (3)

𝐶𝑘,𝑖,𝑓 ≥ 𝐶𝑘,𝑖−1,𝑓 + ∑𝑋𝑗,𝑘,𝑓

𝑁

𝑗=1

 . 𝑃𝑗,𝑖 𝑘 ∈ {1, … , 𝑁}; 𝑖

∈ {1, … ,𝑀}; 𝑓 ∈ {1, … , 𝐹}

(4)

𝐶𝑘,𝑖,𝑓 ≥ 𝐶𝑘−1,𝑖,𝑓 + ∑𝑋𝑗,𝑘,𝑓

𝑁

𝑗=1

 . 𝑃𝑗,𝑖 𝑘 ∈ {2, … , 𝑁}; 𝑖

∈ {1, … ,𝑀}; 𝑓 ∈ {1, … , 𝐹}

(5)

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑘,𝑀,𝑓 𝑘 ∈ {1, … , 𝑁}; 𝑓 ∈ {1, … , 𝐹} (6)

𝐶𝑘,0,𝑓 = 0 𝑘 ∈ {1, … , 𝑁}; 𝑓 ∈ {1, … , 𝐹} (7)

𝐶𝑘,𝑖,𝑓 ≥ 0 𝑘 ∈ {1, … , 𝑁}; 𝑖 ∈ {1, … ,𝑀}; 𝑓

∈ {1, … , 𝐹}
(8)

𝑋𝑗,𝑘,𝑓 ∈ {0, 1} 𝑘 ∈ {1, … , 𝑁}; 𝑖 ∈ {1,… ,𝑀}; 𝑓

∈ {1, … , 𝐹}
(9)

With Constraint set (2), it is enforced that every job must

occupy exactly one position in the sequence. Constraint set (3)

states that n positions among all nF possible must be occupied.

Constraint set (4) controls that the processing of job in position k

of factory f at each machine can only start when the processing of

the same job on the previous machine is finished. Constraint set

(5) ensures that each job can start only after the previous job

assigned to the same machine at the same factory is completed.

Notice that this previous job might not be exactly in the previous

position but in any preceding positions. Constraint set (6)

formulates the makespan. Constraint set (7) ensures that the

completion time of the job in position k on machine 0 at factory f

must be 0. Lastly, Constraint sets (8) and (9) define the decision

variables.

European Journal of Science and Technology

e-ISSN: 2148-2683 129

Table 1. Parameters and indices used in the models.

Parameter Description

N Number of jobs

M Number of machines

F Number of factories

j, k Index for jobs (or job positions in a sequence); j, k ∈

{1, 2,..., N}

i, l Index for machines; i, l ∈ {1, 2,...,M}

f Index for factories; f ∈ {1, 2,..., F}

Oj,i Operation of job j at machine i

Pj,i Processing time of Oj,i

bigM A sufficiently large positive number

2.2. Minimal Sequence-based Linear

Programming Model

The model given below is the best performing model among

the models proposed by Naderi and Ruiz (2010) and called as the

model 5 in their paper. In this paper, this model is denoted as

Model_2. The said model is a minimal sequence-based distributed

permutation flowshop scheduling model. Model_2 can solve the

DPFSP without actually indexing the factories. Since the

sequence-based variables are used, dummy jobs 0 need to be

defined. Model_2 needs the following decision variables given

below.

Xk,j  Binary variable that takes value 1 if the job j is processed

immediately after the job k; and 0 otherwise.

Cj,i  Continuous variable for the completion time of the job j on

the machine i.

Model_2 exploits the dummy job 0 in such a way that it

partitions a complete sequence into F parts each of which

corresponds to a factory. This is performed through F repetitions

of dummy job 0 in the sequence along with the other jobs.

Therefore, this model searches the space with a sequence counting

n+F positions. One of these repetitions takes place in the first

position of the sequence. All the subsequent jobs until the second

repetition of dummy job 0 are scheduled in factory 1 with their

current relative order. The jobs between the second and third

repetitions of dummy job 0 are those allocated to factory 2. This

repeating for all the subsequent repetitions of dummy job 0, the

jobs after the F-th repetition of dummy job 0 until the last job in

the sequence are those assigned to factory F. For example,

consider a problem with N = 6 and F = 2, one of the possible

solutions is X0,1 =X1,3 =X3,6 =X6,0 =X0,4 =X4,2 = X2,1 = X1,5 = 1; that

is, {0, 3, 6, 0, 4, 2, 1, 5}. In this example, the jobs 3 and 6 are

allocated to factory 1 with this order {3, 6} whereas the other jobs

are assigned to factory 2 with the permutation or sequence {4, 2,

1, 5}. Model_2 is given in detail below.

Objective function: Minimize Cmax (Equation 1)

Subject to:

 ∑ 𝑋𝑘,𝑗 = 1 𝑗 ∈ {1, … , 𝑁} | 𝑗 ≠ 𝑘𝑁

𝑘=0 (10)

 ∑ 𝑋𝑘,𝑗 ≤ 1 𝑘 ∈ {1, … ,𝑁} | 𝑘 ≠ 𝑗𝑁
𝑗=0,𝑘≠𝑗 (11)

 ∑ 𝑋0,𝑗 = 𝐹𝑁
𝑗=1 (12)

 ∑ 𝑋𝑘,0 = 𝐹 − 1𝑁
𝑘=1 (13)

𝑋𝑘,𝑗 + 𝑋𝑗,𝑘 ≤ 1 𝑘 ∈ {1, … , 𝑁 − 1}; 𝑗 ∈ {1, … , 𝑁}| 𝑗

≠ 𝑘, 𝑗 > 𝑘
(14)

𝐶𝑗,𝑖 ≥ 𝐶𝑗,𝑖−1 + 𝑃𝑗,𝑖 𝑗 ∈ {1, … , 𝑁}; 𝑖 ∈ {1, … ,𝑀} (15)

𝐶𝑗,𝑖 ≥ 𝐶𝑘,𝑖 + 𝑃𝑗,𝑖 + 𝑏𝑖𝑔𝑀(𝑋𝑘,𝑗 − 1) 𝑘,

∈ {1, … , 𝑁} | 𝑘 ≠ 𝑗; 𝑖 ∈ {1, … ,𝑀}
(16)

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑗,𝑀 𝑗 ∈ {1, … , 𝑁} (17)

𝐶𝑗,𝑖 ≥ 0 𝑗 ∈ {1, … , 𝑁}; 𝑖 ∈ {1, … ,𝑀} (18)

𝑋𝑘,𝑗 ∈ {0, 1} 𝑘, 𝑗 ∈ {0, … , 𝑁} | 𝑘 ≠ 𝑗 (19)

Note that Ck,0 = C0,l = 0. Constraint set (10) ensures that every

job is required to be accurately at one position. Constraint set (11)

indicates that every job has at most one subsequent job. Constraint

set (12) enforces that dummy job 0 appears F times in the

sequence as a predecessor where Constraint set (13) assures

dummy job 0 must be a successor F−1 times. Constraint set (14)

avoids the occurrence of cross-precedencies, meaning that a job

cannot be at the same time both a predecessor and a successor of

another job. Constraint set (15) forces that for every job j, Oj,i

cannot begin before Oj,i−1 completes. Similarly, Constraint set (16)

specifies that if job j is scheduled immediately after the job k it's

processing on each machine i cannot begin before the processing

of the job k on the machine i finishes. Constraint set (17) defines

the makespan. Lastly, Constraint sets (18) and (19) define the

decision variables.

2.3. Linear Programming Model Based on the

mTSP-assignment Based Integer Programming

Formulation

This model (represented by Model_3) is developed based on

the assignment-based integer programming formulation (Bektas

(2006)) proposed for the mTSP solution. DPFSP is correlated to

the scheduling of M jobs for F factories and mTSP is a

generalization of the well-known traveling salesman problem,

where more than one salesman is allowed to be used in the

solution. In this sense, the scheduling of the jobs for F separate

factories in the DPFSP and the usage of more than one salesman

in the mTSP illustrates structural similarity. As a result, the

developed new model (Model_3) enables the usage of the subtour

elimination constraints proven to be effective. Model_3 uses the

same decision variables (Xk,j and Cj,i) with Model_2. In the

original mTSP model, the decision variable Xk,j is as follows and

this decision variable is also pertinent to the DPFSP.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 130

Xk,j (in mTSP)  Binary variable that takes value 1 if arc (k, j) is

used on the tour; and 0 otherwise.

Xk,j (in Model_3)  Binary variable that take-s value 1 if the job

j is processed immediately after the job k; and 0 otherwise.

Model_3 also needs the continuous variable (Cj,i) for deciding the

completion time of the job j on the machine i.

The integer linear programming formulation developed by

drawing inspiration from the mTSP-assignment based integer

programming formulation for the DPFSP solution is as follows:

Objective function: Minimize Cmax (Equation 1)

Subject to:

∑𝑋0,𝑗 = 𝐹

𝑁

𝑗=1

 (20)

∑ 𝑋𝑘,0 = 𝐹

𝑁

𝑘=1

 (21)

∑ 𝑋𝑘,𝑗 = 1 𝑗 ∈ {1, … , 𝑁} | 𝑗 ≠ 𝑘

𝑁

𝑘=0

 (22)

∑𝑋𝑘,𝑗 = 1 𝑘 ∈ {1, … , 𝑁}| 𝑘 ≠ 𝑗

𝑁

𝑗=0

 (23)

𝑈𝑘 − 𝑈𝑗 + 𝑁𝑋𝑘,𝑗 ≤ 𝑁 − 1 𝑘, 𝑗 ∈ {1, … , 𝑁} | 𝑘 ≠ 𝑗 (24)

And, Constraint sets (15), (16), (17), (18) and (19)

Note that Ck,0 = C0,l = 0. Constraint sets (20) and (21) ensure that

exactly F salesmen depart from and return back to node 0 (the

depot). Constraint sets (22) and (23) are the usual assignment

constraints. Constraints (24) are used for preventing the sub tours,

being degenerate tours that are formed between intermediate

nodes and not associated to the origin. These constraints are

named as subtour elimination constraints.

2.4. Linear Programming Model Based on the

mTSP-flow-based Formulation
This model (shown by Model_4), is developed by inspiring

the flow-based formulation available in Bektas (2006). In

Model_4, the three-index decision variable given below is used.

Xk,j,f  Binary variable that takes value 1 if vehicle f (factory)

visits the node j (job j) immediately after the node k (job k); and 0

otherwise.

Similarly, Model_4 also requires the continuous variable (Cj,i) for

deciding the completion time of the job j on the machine i.

Objective function: Eq. (1)

Subject to:

∑ ∑ 𝑋𝑘,𝑗,𝑓 = 1

𝐹

𝑓=1

𝑁

𝑘=0|𝑘≠𝑗

 𝑗 ∈ {1, … , 𝑁} (25)

∑ 𝑋𝑘,𝑝,𝑓

𝑁

𝑘=0|𝑘≠𝑝

− ∑ 𝑋𝑝,𝑗,𝑓 = 0

𝑁

𝑗=0|𝑗≠𝑝

 𝑝 ∈ {0, … , 𝑁}; 𝑓

∈ {1, … , 𝐹}

(26)

∑𝑋0,𝑗,𝑓 = 1 𝑓 ∈ {1, … , 𝐹}

𝑁

𝑗=1

 (27)

𝑈𝑘 − 𝑈𝑗 + 𝑁 ∑ 𝑋𝑘,𝑗,𝑓

𝐹

𝑓=1

≤ 𝑁 − 1 𝑘, 𝑗

∈ {1, … , 𝑁} | 𝑘 ≠ 𝑗

(28)

𝐶𝑗,𝑖 ≥ 𝐶𝑘,𝑖 + 𝑃𝑗,𝑖 + 𝑏𝑖𝑔𝑀(𝑋𝑘,𝑗,𝑓 − 1)

𝑘, 𝑗 ∈ {1, … , 𝑁} | 𝑘 ≠ 𝑗; 𝑖 ∈ {1, … ,𝑀}; 𝑓
∈ {1, … , 𝐹}

(29)

𝑋𝑘,𝑗,𝑓 ∈ {0, 1} 𝑘, 𝑗 ∈ {0, … , 𝑁} | 𝑘 ≠ 𝑗; 𝑓

∈ {1, … , 𝐹}
(30)

And, Constraint sets (15), (17) and (18)

Note that Ck,0 = C0,l = 0. Constraints (25) state that each

customer (job) be visited exactly once and (26) are the flow

conservation constraints ensuring that once a salesman (factory)

visits a customer (job), then he must also depart from the same

customer (job). Constraints (27) ensure that each vehicle (factory)

is used exactly once and (28) is the extension of the sub tour

elimination constraint to a three-index model. Constraint set (29),

in a manner similar to the Constraint set (16), specifies that if the

job j is scheduled immediately after the job k its processing on

each machine i at the factory f cannot begin before processing the

job k on the machine i at the factory f finishes.

3. Pure Benders Decomposition Algorithm-

based Models

Benders decomposition has been proven a powerful technique for

solving specially-structured large-scale linear and mixed-integer

programs since its presentation in Benders (1962) (Sherali, and

Fraticelli (2002)). The decomposition of a given model into

master and subproblem is allowed. No more than a subset of the

variables and constraints of the original model is incorporated in

the master problem. The subproblem is the original model, the

master problem variables of which are fixed, whose solution

yields either optimality or feasibility cut for the master problem

(Costa et al., (2012)). The Benders decomposition algorithm

repeats between the master and sub-problem until an optimal

solution is obtained. Readers can refer to the recent survey article

presented by Rahmaniani et al. (2017) on the application of the

Benders decomposition algorithm to combinatorial optimization

problems.

In the following two sub-sections, four different pure Benders

decomposition algorithm are developed based on Model_1 and

two different pure Benders decomposition algorithm by using

Model_3.

3.1. Model_1 Based Pure Benders Decomposition

Algorithm

In this sub-section, four diverse pure Benders decomposition

algorithms are developed based upon Model_1.

3.1.1. Version 1 of the Model_1 Based Pure Benders

Decomposition Algorithm

This version of the pure Benders decomposition algorithm

developed based on Model_1 is denominated as PB_Model1_V1.

In PB_Model1_V1, after having solved the master model, the

whole solution obtained from the master model solution (all

decision variables taking the value of 1) is fixed in the

subproblem. One large cut is obtained from the subproblem

solution and this cut is added to the master model to be solved in

the next Benders iteration. The subproblem is the dual of the

primal subproblem and the primal subproblem is obtained by

excluding the constraints from the original model that are

common to the master model.

European Journal of Science and Technology

e-ISSN: 2148-2683 131

Let 𝑀(𝐶, 𝑋) denote the formulation (1)-(9) where 𝑋 = |𝑗, 𝑘 =
1, . . . , 𝑁; 𝑓 = 1, . . . , 𝐹} and 𝐶 = {𝐶𝑘,𝑖,𝑓| 𝑘 = 1, . . . , 𝑁; 𝑖 =

1, . . . , 𝑀; 𝑓 = 1, . . . , 𝐹} are the vectors of the decision variables.

Let’s suppose that the variables X have been fixed as 𝑋 = �̂� =
{𝑋 | 𝑋 satisfies (2), (3), (9)} . The resulting formulation, shown

by 𝑀(𝐶, �̂�), consists of only the variables C, and the constraints

of which are assigned the dual variables 𝛼 = {𝛼𝑘,𝑖,𝑓 ≥ 0 | 𝑘 =

1, . . . , 𝑁; 𝑖 = 1, . . . , 𝑀; 𝑓 = 1, . . . , 𝐹} corresponding to constraints

(4), 𝛽 = {𝛽𝑘,𝑖,𝑓 ≥ 0 | 𝑘 = 2, . . . , 𝑁; 𝑖 = 1, . . . , 𝑀; 𝑓 =

1, . . . , 𝐹} corresponding to constraints (5), 𝛾 = {𝛾𝑘,𝑓 ≥ 0 | 𝑘 =

1, . . . , 𝑁; 𝑓 = 1, . . . , 𝐹} corresponding to constraints (6), and 𝛿 =

{𝛿𝑘,𝑓 = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 | 𝑘 = 1, . . . , 𝑁; 𝑓 = 1, . . . , 𝐹}

corresponding to constraints (7), respectively. The dual 𝐷 =

(𝛼, 𝛽, 𝛾, 𝛿, �̂�) of 𝑀(𝐶, �̂�) is given by the following:

Maximize ∑ ∑ ∑ 𝛼𝑘,𝑖,𝑓

𝐹

𝑓=1

𝑀

𝑖=1

𝑁

𝑘=1

∑�̂�𝑗,𝑘,𝑓𝑃𝑗,𝑖

𝑁

𝑗=1

+ ∑ ∑ ∑ 𝛽𝑘,𝑖,𝑓

𝐹

𝑓=1

𝑀

𝑖=1

𝑁

𝑘=2

∑�̂�𝑗,𝑘,𝑓𝑃𝑗,𝑖

𝑁

𝑗=1

(31)

Subject to:

𝛿𝑘,𝑓 − 𝛼𝑘,1,𝑓 ≤ 0 𝑘 ∈ {1, … , 𝑁}; 𝑓 ∈ {1, … , 𝐹} (32)

∑ ∑ 𝛾𝑘,𝑓 ≤

𝐹

𝑓=1

𝑁

𝑘=1

1 (33)

𝛼1,𝑖,𝑓 − 𝛼1,𝑖+1,𝑓 − 𝛽2,𝑖,𝑓 ≤ 0 𝑖 ∈ {1, … ,𝑀 − 1}; 𝑓

∈ {1, … , 𝐹}
(34)

𝛼1,𝑀,𝑓 − 𝛽2,𝑀,𝑓 − 𝛾1,𝑓 ≤ 0 𝑓 ∈ {1, … , 𝐹} (35)

𝛼𝑘,𝑖,𝑓 − 𝛼𝑘,𝑖+1,𝑓 + 𝛽𝑘,𝑖,𝑓 − 𝛽𝑘+1,𝑖,𝑓 ≤ 0

𝑘 ∈ {2, … , 𝑁 − 1}; 𝑖 ∈ {1, … ,𝑀 − 1}; 𝑓 ∈ {1, … , 𝐹}
(36)

𝛼𝑘,𝑀,𝑓 + 𝛽𝑘,𝑀,𝑓 − 𝛽𝑘+1,𝑀,𝑓 − 𝛾𝑘,𝑓 ≤ 0 𝑘

∈ {2, … , 𝑁 − 1}; 𝑓 ∈ {1,… , 𝐹}
(37)

𝛼𝑁,𝑖,𝑓 − 𝛼𝑁,𝑖+1,𝑓 + 𝛽𝑁,𝑖,𝑓 ≤ 0 𝑖 ∈ {1, … ,𝑀 − 1}; 𝑓

∈ {1, … , 𝐹}
(38)

𝛼𝑁,𝑀,𝑓 + 𝛽𝑁,𝑀,𝑓 − 𝛾𝑁,𝑓 ≤ 0 𝑓 ∈ {1, … , 𝐹} (39)

The model (master model) consisting of the Constraint sets

(2), (3), and (9) always generates a viable solution, which, in turn,

means that 𝐷 = (𝛼, 𝛽, 𝛾, 𝛿, �̂�) is always feasible for a given �̂�,

and for an optimal solution (𝛼, 𝛽, 𝛾, 𝛿) of the dual problem, one

obtains the following Benders optimality cuts:

𝑧 ≥ ∑ ∑ ∑ 𝐴𝑗,𝑘,𝑓𝑋𝑗,𝑘,𝑓

𝐹

𝑓=1

𝑁

𝑘=1

𝑁

𝑗=1

+ ∑ ∑ ∑ 𝐵𝑗,𝑘,𝑓𝑋𝑗,𝑘,𝑓

𝐹

𝑓=1

𝑁

𝑘=2

𝑁

𝑗=1

where z is a lower bound on the optimal solution value of

𝑀(𝐶, 𝑋), 𝐴𝑗,𝑘,𝑓 = ∑ �̂�𝑘,𝑖,𝑓
𝑀
𝑖=1 𝑃𝑗,𝑖

and 𝐵𝑗,𝑘,𝑓 = ∑ �̂�𝑘,𝑖,𝑓
𝑀
𝑖=2 𝑃𝑗,𝑖. Using this result, we are now ready to

present the following reformulation of 𝑀(𝐶, 𝑋), referred to as the

master problem constructed using the set PD of extreme points of

𝐷 = (𝐶, 𝑋) and shown as MP(PD) below:

Minimize 𝑧 (40)

Subject to:

∑ ∑ 𝑋𝑗,𝑘,𝑓 = 1

𝐹

𝑓=1

𝑁

𝑘=1

 𝑗 ∈ {1, … , 𝑁} (41)

∑ ∑ 𝑋𝑗,𝑘,𝑓 = 1

𝐹

𝑓=1

𝑁

𝑗=1

𝑘 ∈ {1, … , 𝑁} (42)

𝑧

≥ ∑ ∑ ∑ 𝐴𝑗,𝑘,𝑓𝑋𝑗,𝑘,𝑓

𝐹

𝑓=1

𝑁

𝑘=1

𝑁

𝑗=1

+ ∑ ∑ ∑ 𝐵𝑗,𝑘,𝑓𝑋𝑗,𝑘,𝑓 (𝛼, 𝛽, 𝛾, 𝛿) ∈ 𝑃𝐷

𝐹

𝑓=1

𝑁

𝑘=2

𝑁

𝑗=1

(43)

𝑋𝑗,𝑘,𝑓 ∈ {0, 1} 𝑘 ∈ {1, … , 𝑁}; 𝑖 ∈ {1,… ,𝑀}; 𝑓

∈ {1, … , 𝐹}
(44)

Since the MP includes a large number of optimality cuts, it can be

solved by using a cutting plane algorithm in practice, normally

starting with MP (∅) with no optimality cuts (43) and generating

the cuts on an as-needed basis. The algorithm usually stops after

having solved a certain MP(P), where 𝑃 ⊂ 𝑃𝐷.

3.1.2. Version 2 of the Model_1 Based Pure Benders

Decomposition Algorithm

In this version (shown by PB_Model1_V2) as a more

dissimilar approach, rather than producing only one cut over the

solution received from the master model, the jobs found in the

solution received from the master model are decomposed in

accordance with the factories to which they are assigned.

Subsequently, separate cuts are obtained for the factory solutions

to which at least 1 job is assigned in the master model and

afterward, each cut obtained is added to the master problem

independently for all factories for the subsequent master problem

solution. In other words, let’s assume that the number of factories

(F) is 2 and at least 1 job is assigned to each factory in the master

problem solution. The subproblem is solved by using the cluster

of jobs assigned to each factory and the produced cut is separately

added to the master model for each factory. Since there is at least

1 job assigned to each factory in this example, 4 cuts in total are

generated in each iteration and added to the master model. To

explain with a more explanatory example, consider a problem

with N = 6 and F = 2, one of the possible MP solutions is X1,1,1

=X2,3,1 =X3,6,1 =X4,2,2 =X5,4,2 =X6,5,2 = 1. In this example, the jobs 1,

2 and 3 are allocated to factory 1 with this order {1, 2, 3} while

the other jobs are assigned to factory 2 with the permutation or

sequence {4, 5, 6}. According to this multiple cut generating and

adding strategy, 2 different submodels consisting of the jobs {1,

2, 3} and {4, 5, 6} are generated. Each submodel is solved and

each cut obtained from the submodel is added to the master model

for every 2 factories. Since at least 1 job is assigned to each

factory in the example, 2 different submodels are generated and

solved. Each cut is added to the master model for every 2

factories. Thus, 4 cuts in total are added to the master model for

this example.

In this version, the dual problem is independent from the factory

indices. The main steps of this version of the problem are given

below.

Input: Problem data, allowable optimality gap 𝜀 ≥ 0

1. Set LB = -∞, UB = ∞

2: while (LB ≤ UB) do

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 132

3: Solve MP in order to obtain �̂� = {𝑋|𝑋 satisfies (2), (3),
and (9)}, and obtain solution value, obj_master

4. if (LB < obj_master)

5: LB = obj_master;

6: endif

7: for (f = 1 to F) //factory indices

8: counter = 1;

9: for (j= 1 to N) //job indices

10: for (k = 1 to N) //position indices

11: if (Xj,k,f == 1)

12: JL [counter] = j; //job list

13: PL [counter] = k; //position list

14: counter = counter + 1;

15: endif

16: endfor

17: endfor

18: NJ = counter -1; //number of job in the factory f

19. if (NJ > 0)

20: Solve SP depending on the jobs in JL and obtain the

solution value of SP, obj_sub

21: if (UB > obj_sub)

22: UB = obj_sub;

23: endif
25: for (g=1 to F) //g used for denoting the factories

26: Insert optimality cut to MP for factory g by using

the jobs in JL and theirs original positions in list PL

27: endfor

24: endif

28: endfor

29: endwhile

30: Report the best solution found by the last MP solution

The subproblem is the dual of the model given below. Please

note that the model has been transformed into the classic flow

shop model. If there is at least 1 job assigned to at least one factory

whatsoever in the solution obtained from the master problem, the

subproblem is solved for that factory and the obtained cut is

inserted again into the master problem separately by considering

the original positions of the decision variables coming from the

master problem solution. That is to say, the same cut is inserted

into the master problem separately for each factory by considering

the positions of the decision variables coming from the master

problem solution.

Minimize Cmax = 𝐶𝑁𝐽,𝑀 (45)

𝐶𝑘,𝑖 ≥ 𝐶𝑘,𝑖−1 + ∑�̂�𝐽𝐿[𝑗],𝑘𝑃𝐽𝐿[𝑗],𝑖

𝑁𝐽

𝑗=1

 𝑘 ∈ {1, … , 𝑁𝐽}; 𝑖

∈ {1, … ,𝑀}

(46)

𝐶𝑘,𝑖 ≥ 𝐶𝑘−1,𝑖 + ∑ �̂�𝐽𝐿[𝑗],𝑘𝑃𝐽𝐿[𝑗],𝑖

𝑁𝐽

𝑗=1

 𝑘 ∈ {2, … , 𝑁𝐽}; 𝑖

∈ {1, … ,𝑀}

(47)

𝐶𝑘,0 = 0 𝑘 ∈ {1,… , 𝑁𝐽} (48)

𝐶𝑘,𝑖 ≥ 0 𝑘 ∈ {1, … , 𝑁𝐽}; 𝑖 ∈ {1, … ,𝑀} (49)

In the formulation (45)-(49), �̂� = {𝑋𝑗,�̂�|𝑗 ∈ 𝐽𝐿[𝑐], 𝑐 =

1,… , 𝑁𝐽; 𝑘 = 1, . . . , 𝑁𝐽} comes from a factory solution of MP,

and 𝐶 = {𝐶𝑘,𝑖| 𝑘 = 1, . . . , 𝑁𝐽; 𝑖 = 1, . . . , 𝑀} are the vectors of

the decision variables. The resulting formulation, shown by

𝑀(𝐶, �̂�), consists of the variables C only, and the constraints of

which are assigned the dual variables 𝛼 = {𝛼𝑘,𝑖 ≥ 0 | 𝑘 =

1, . . . , 𝑁𝐽; 𝑖 = 1, . . . , 𝑀} corresponding to constraints (46), 𝛽 =

{𝛽𝑘,𝑖 ≥ 0 | 𝑘 = 2, . . . , 𝑁𝐽; 𝑖 = 1, . . . , 𝑀} corresponding to

constraints (47), and 𝛿 = {𝛿𝑘 = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 | 𝑘 = 1, . . . , 𝑁𝐽}
corresponding to constraints (48), respectively. The dual 𝐷 =

(𝛼, 𝛽, 𝛿, �̂�) of 𝑀(𝐶, �̂�) is given in the formulation (50)-(57).

Maximize ∑ ∑𝛼𝑘,𝑖 ∑ �̂�𝐽𝐿[𝑗],𝑘𝑃𝐽𝐿[𝑗],𝑖

𝑁𝐽

𝑗=1

𝑀

𝑖=1

𝑁𝐽

𝑘=1

+ ∑ ∑ 𝛽𝑘,𝑖

𝑀

𝑖=1

𝑁𝐽

𝑘=2

∑�̂�𝐽𝐿[𝑗],𝑘𝑃𝐽𝐿[𝑗],𝑖

𝑁𝐽

𝑗=1

(50)

Subject to:

𝛿𝑘 − 𝛼𝑘,1 ≤ 0 𝑘 ∈ {1, … , 𝑁𝐽} (51)

𝛼1,𝑖 − 𝛼1,𝑖+1 − 𝛽2,𝑖 ≤ 0 𝑖 ∈ {1, … ,𝑀 − 1} (52)

𝛼1,𝑀 − 𝛽2,𝑀 ≤ 0 (53)

𝛼𝑘,𝑖 − 𝛼𝑘,𝑖+1 + 𝛽𝑘,𝑖 − 𝛽𝑘+1,𝑖 ≤ 0 𝑘

∈ {2, … , 𝑁𝐽 − 1}; 𝑖 ∈ {1, … ,𝑀 − 1}

(54)

𝛼𝑘,𝑀 + 𝛽𝑘,𝑀 − 𝛽𝑘+1,𝑀 ≤ 0 𝑘 ∈ {2, … , 𝑁𝐽 − 1} (55)

𝛼𝑁𝐽,𝑖 − 𝛼𝑁𝐽,𝑖+1 + 𝛽𝑁𝐽,𝑖 ≤ 0 𝑖 ∈ {1, … ,𝑀 − 1} (56)

𝛼𝑁𝐽,𝑀 + 𝛽𝑁𝐽,𝑀 ≤ 1 (57)

If any factory in the solution obtained from the master

problem comprises at least 1 job, the cuts are added to the master

model for all factories as given below.

for (g=1 to F) //g used for denoting the factories

𝑧 ≥ ∑ ∑ 𝐴𝐽𝐿[𝑗],𝑃𝐿[𝑘]𝑋𝐽𝐿[𝑗],𝑃𝐿[𝑘],𝑔

𝑁𝐽

𝑘=1

𝑁𝐽

𝑗=1

+ ∑ ∑ 𝐵𝐽𝐿[𝑗],𝑃𝐿[𝑘]𝑋𝐽𝐿[𝑗],𝑃𝐿[𝑘],𝑔

𝑁𝐽

𝑘=2

𝑁𝐽

𝑗=1

endfor

where z is a lower bound on the optimal solution value of

𝑀(𝐶, 𝑋), 𝐴𝐽𝐿[𝑗],𝑃𝐿[𝑘] = ∑ �̂�𝑘,𝑖
𝑀
𝑖=1 𝑃𝐽𝐿[𝑗],𝑖 and 𝐵𝐽𝐿[𝑗],𝑃𝐿[𝑘] =

∑ �̂�𝑘,𝑖
𝑀
𝑖=2 𝑃𝐽𝐿[𝑗],𝑖.

In each Benders iteration, F*F cuts (maximum) are inserted in

this version (if each factory includes at least 1 job in the master

problem-solution).

3.1.3. Version 3 of the Model_1 Based Pure Benders

Decomposition Algorithm

In this version (represented by PB_Model1_V3), differently

from PB_Model1_V2, the makespans are calculated separately

for the factories to which at least 1 job is assigned in the master

problem solution. The subproblem is solved only for the factory

yielding the longest makespan and the cut is inserted into the MP

only for the factory yielding the longest makespan. In this version,

only one cut is subsequently inserted in each Benders iteration.

After having obtained a job permutation from a factory solution

of the master problem solution, the makespan is calculated by

using a completion time matrix as proposed by Onwubolu and

Davendra (2006). For illustrating the operating principle of the

completion time matrix, let’s apply it to a 5-machine and 10-job

problem. Processing times are given in Table 2. Suppose that the

European Journal of Science and Technology

e-ISSN: 2148-2683 133

job permutation of ith factory obtained from the master problem

solution is π = {3, 5, 2, 1, 4}.

Table 2. Processing times for a 10×5 example problem.

Machine
Job

1 2 3 4 5 6 7 8 9 10

1 5 7 4 3 6 7 5 3 6 8

2 6 5 7 6 7 5 6 5 1 6

3 7 8 3 8 5 8 7 8 7 4

4 8 6 5 5 8 5 6 5 5 4

5 4 4 8 7 3 7 7 8 8 2

The completion time matrix is shown below with a makespan

value of 58, which is the last entry in the matrix.

[𝐶] =

[

4
11
14
19
27

10
18
23
31
34

17
23
31
37
41

22
29
38
46
50

25
35
46
51
58]

3.1.4. Version 4 of the Model_1 Based Pure Benders

Decomposition Algorithm

In this version (shown by PB_Model1_V4), similarly, with

PB_Model1_V3, the makespan is calculated separately for the

factories to which at least 1 factory is assigned in the master

problem solution. The subproblem is solved only for the factory

yielding the longest makespan and the cut obtained from the

subproblem solution is inserted separately for all factories as is

the case in PB_Model1_V2 (the same cut is applied to all

factories). In this version, F cuts are subsequently inserted in each

Benders iteration.

3.2. Model_3 Based Pure Benders Decomposition

Algorithms

As will be seen in the Computation results section, the model

called Model_3 has given the best performance among the models

including the big M constraint. Therefore, 2 different Model_3

based pure Benders decomposition algorithms are developed in

this Section. As also underlined often previously, Model_2 was

presented by Naderi and Ruiz (2010) as the model yielding the

best performance. A separate pure Benders decomposition

algorithm is also developed for Model_2. The master problem for

the developed Model_2 consists of the Constraint sets (10), (11),

(12), (13), (14), and (19). But this generated master model may

also yield unfeasible solutions and also needs the feasibility cuts

accordingly. The Model_2 based pure Benders decomposition

algorithm is not included in the paper since it produces very bad

performance when compared to the Model_3 based Benders

algorithm.

3.2.1. Version 1 of the Model_3 Based Pure Benders

Decomposition Algorithm

In a manner similar to PB_Model1_V1, in this version

(represented by PB_Model3_V1), the subproblem is solved by

fixing all of the decision variables obtained from the master model

solutions in the subproblem. In this version, one large cut

indicating the entire solution is inserted into master the problem

in each Benders iteration. The master model consists of the

Constraint sets (19) – (24) in the Benders algorithm of this model

and the subproblem is the dual of the model given below.

Minimize Cmax (58)

Subject to:

𝐶𝑗,𝑖 ≥ 𝐶𝑗,𝑖−1 + 𝑃𝑗,𝑖 𝑗 ∈ {1, … , 𝑁}; 𝑖 ∈ {1, … ,𝑀} (59)

𝐶𝑗,𝑖 ≥ 𝐶𝑘,𝑖 + 𝑃𝑗,𝑖 + 𝑏𝑖𝑔𝑀(�̂�𝑘,𝑗 − 1)

𝑘 ∈ {0,1, … , 𝑁}, 𝑗 ∈ {1, … , 𝑁} | 𝑘 ≠ 𝑗; 𝑖 ∈ {1, … ,𝑀}

(60)

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑗,𝑀 𝑗 ∈ {1, … , 𝑁} (61)

𝐶𝑗,0 = 0 𝑗 ∈ {1, … , 𝑁} (62)

𝐶0,𝑖 = 0 𝑖 ∈ {1, … ,𝑀} (63)

𝐶𝑗,𝑖 ≥ 0 𝑗 ∈ {1, … , 𝑁}; 𝑖 ∈ {1, … ,𝑀} (64)

In the formulation (58)-(64), �̂� = {�̂�𝑘,𝑗|𝑘 ∈ {0,1, … , 𝑁}, 𝑗 ∈
{1, … , 𝑁}|𝑘 ≠ 𝑗} comes from the MP solution, and 𝐶 =
 {𝐶𝑘,𝑖| 𝑘 = 1, . . . , 𝑁𝐽; 𝑖 = 1, . . . , 𝑀} are the vectors of the decision

variables. Note that there is no need for the decision variables

�̂� = {�̂�𝑘,0|𝑘 ∈ {0,1, … , 𝑁}} in this formulation. The resulting

formulation, shown by 𝑀(𝐶, �̂�), consists of the variables C only

and the constraints of which are assigned the dual variables;

𝛼 = {𝛼𝑗,𝑖 ≥ 0 | 𝑗 ∈ {1, … , 𝑁}; 𝑖 ∈ {1, … ,𝑀} } for constraints set

(59),

𝛽 = {𝛽𝑗,𝑘,𝑖 ≥ 0 | 𝑗 ∈ {1, … , 𝑁}; 𝑘 ∈ {0,1, … , 𝑁}|𝑘 ≠ 𝑗; 𝑖 ∈
{1, … ,𝑀}} for constraints set (60),

 𝛾 = {𝛾𝑗 ≥ 0 | 𝑗 ∈ {1, … , 𝑁} } for constraint set (61),

𝛿 = {𝛿𝑗 = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 | 𝑗 = 1, . . . , 𝑁} for constraints (62),

𝜃 = {𝜃𝑖 = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 | 𝑖 = 1, . . . , 𝑀} for constraints (63),

respectively.

The dual 𝐷 = (𝛼, 𝛽, 𝛾, 𝛿, 𝜃, �̂�) of 𝑀(𝐶, �̂�) is given in the

formulation (65)-(70).

Maximize ∑ ∑𝛼𝑗,𝑖𝑃𝑗,𝑖

𝑀

𝑖=1

𝑁

𝑗=1

+ ∑ ∑ ∑𝛽𝑗,𝑘,𝑖

𝑀

𝑖=1

𝑁

𝑗=1|𝑗≠𝑘

𝑁

𝑘=0

[𝑃𝑗,𝑖

+ 𝑏𝑖𝑔𝑀(�̂�𝑘,𝑗 − 1)]

(65)

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 134

Subject to:

∑𝛾𝑗 ≤

𝑁

𝑗=1

1 (66)

𝛼𝑗,𝑖 − 𝛼𝑗,𝑖+1 − ∑ 𝛽𝑘,𝑗,𝑖

𝑁

𝑘=1|𝑘≠𝑗

+ ∑ 𝛽𝑗,𝑘,𝑖

𝑁

𝑘=0|𝑘≠𝑗

≤ 0 𝑗

∈ {1, … , 𝑁}; 𝑖 ∈ {1, … ,𝑀}

(67)

𝛼𝑗,𝑀 − 𝛾𝑗 − ∑ 𝛽𝑘,𝑗,𝑀

𝑁

𝑘=1|𝑘≠𝑗

+ ∑ 𝛽𝑗,𝑘,𝑀

𝑁

𝑘=0|𝑘≠𝑗

≤ 0 𝑗

∈ {1, … , 𝑁}

(68)

𝛿𝑗 − 𝛼𝑗,1 ≤ 0 𝑗 ∈ {1, … , 𝑁} (69)

𝜃𝑖 − ∑ 𝛽𝑗,0,𝑖 ≤ 0

𝑁

𝑗=1

 𝑖 ∈ {1, … ,𝑀} (70)

The model (master model) constantly generates a viable

solution, which, in turn, means that 𝐷 = (𝛼, 𝛽, 𝛾, 𝛿, 𝜃, �̂�) is

always feasible for a given �̂�, and for an optimal solution
(𝛼, 𝛽, 𝛾, 𝛿, 𝜃) of the dual problem, one obtains the following

Benders optimality cuts:

𝑧 ≥ 𝑡𝑜𝑡𝑎𝑙 + ∑ ∑ 𝐴𝑘,𝑗𝑋𝑘,𝑗

𝑁

𝑗=1|𝑗≠𝑘

𝑁

𝑘=0

where z is a lower bound on the optimal solution value of

𝑀(𝐶, 𝑋),

𝑡𝑜𝑡𝑎𝑙 = ∑∑ �̂�𝑗,𝑖

𝑀

𝑖=1

𝑁

𝑗=1

𝑃𝑗,𝑖

+ ∑ ∑ ∑ �̂�𝑗,𝑘,𝑖𝑃𝑗,𝑖

𝑀

𝑖=1

𝑁

𝑘=0|𝑘≠𝑗

𝑁

𝑗=1

− ∑ ∑ ∑ �̂�𝑗,𝑘,𝑖𝑏𝑖𝑔𝑀

𝑀

𝑖=1

𝑁

𝑘=0|𝑘≠𝑗

𝑁

𝑗=1

𝐴𝑘,𝑗 = ∑�̂�𝑗,𝑘,𝑖𝑏𝑖𝑔𝑀

𝑀

𝑖=1

Using this result, we are now ready to present the following

reformulation of 𝑀(𝐶, 𝑋), referred to as the master problem

constructed by using the set PD of extreme points of 𝐷 = (𝐶, 𝑋)

and shown as MP(PD) below:

Minimize 𝑧 (71)

Subject to:

𝑧 ≥ 𝑡𝑜𝑡𝑎𝑙 + ∑ ∑ 𝐴𝑘,𝑗𝑋𝑘,𝑗

𝑁

𝑗=1|𝑗≠𝑘

𝑁

𝑘=0

(72)

And, Constraint set (19) – (24)

As the MP includes a large number of optimality cuts, it can

be solved by using a cutting plane algorithm in practice, normally

starting with MP(∅) with no optimality cuts (72) and generating

the cuts on an as-needed basis. The algorithm usually stops after

having solved a certain MP(P), where 𝑃 ⊂ 𝑃𝐷.

3.2.2. Version 2 of the Model_3 Based Pure Benders

Decomposition Algorithm

In this version (represented by PB_Model3_V2), similarly,

with PB_Model1_V3, the makespan is calculated separately for

the factories to which at least 1 factory is assigned in the MP

solution. The subproblem is run only for the factory yielding the

longest (maximum) makespan and the cut for the master model is

generated only for the jobs causing the maximum makespan and

inserted to the master model. For example, consider a problem

with N = 6 and F = 2, one of the possible solutions of MP is X0,1

=X1,3 =X3,6 =X6,0 =X0,4 =X4,2 = X2,1 = X1,5 = X5,0 = 1; that is,{0, 3, 6,

0, 4, 2, 1, 5, 0}. In this example, jobs 3 and 6 are allocated to

factory 1 with this order {3,6} while the other jobs are assigned

to factory 2 with the permutation or sequence {4, 2, 1, 5}. Once

the makespans of the factories in the example by the makespan

calculation method in PB_Model1_V3, let’s assume that the 2nd

factory is the factory yielding the longest makespan. In this

version, only the cut consisting of the jobs {4, 2, 1, 5} at the

factory is generated and inserted into the master model.

Similarly, the master model consists of the Constraint sets

(19)-(24) in the Benders algorithm developed for this version.

While modeling the subproblem, let’s assume that a list

denominated JL holds the jobs assigned to the factory yielding the

longest (maximum) makespan in the master model solution. Let’s

start it with the position index. Let 0 be in the position 0 and total

number of jobs except for 0 available in the JL list be NJ. For

example, for the example above, JL= {0, 4, 2, 1, 5} and also NJ

becomes equal to 4. The subproblem formed by the jobs in the JL

list is the dual of the model, the primal of which is given below.

Minimize 𝐶𝑚𝑎𝑥 (73)

Subject to:

𝐶𝐽𝐿[𝑗],𝑖 ≥ 𝐶𝐽𝐿[𝑗],𝑖−1 + 𝑃𝐽𝐿[𝑗],𝑖 𝑗 ∈ {1, … , 𝑁𝐽}; 𝑖

∈ {1, … ,𝑀}
(74)

𝐶𝐽𝐿[𝑗],𝑖 ≥ 𝐶𝐽𝐿[𝑘],𝑖 + 𝑃𝐽𝐿[𝑗],𝑖 + 𝑏𝑖𝑔𝑀(�̂�𝐽𝐿[𝑘],𝐽𝐿[𝑗] − 1)

𝑘 ∈ {0,1, … , 𝑁𝐽}, 𝑗 ∈ {1, … , 𝑁𝐽} | 𝑘 ≠ 𝑗; 𝑖 ∈ {1, … ,𝑀}
(75)

𝐶𝑚𝑎𝑥 ≥ 𝐶𝐽𝐿[𝑗],𝑀 𝑗 ∈ {1, … , 𝑁𝐽} (76)

𝐶𝐽𝐿[𝑗],0 = 0 𝑗 ∈ {1, … , 𝑁𝐽} (77)

𝐶0,𝑖 = 0 𝑖 ∈ {1, … ,𝑀} (78)

𝐶𝐽𝐿[𝑗],𝑖 ≥ 0 𝑗 ∈ {1, … , 𝑁𝐽}; 𝑖 ∈ {1, … ,𝑀} (79)

In the formulation (73)-(79), �̂� = {�̂�𝐽𝐿[𝑘],𝐽𝐿[𝑗]|𝑘 ∈

{0,1, … , 𝑁𝐽}, 𝑗 ∈ {1, … , 𝑁𝐽}|𝑘 ≠ 𝑗} comes from the MP solution,

and 𝐶 = {𝐶𝐽𝐿[𝑘],𝑖| 𝑘 = 1, . . . , 𝑁𝐽; 𝑖 = 1, . . . , 𝑀} are the vectors of

the decision variables. Note that there is no need for the decision

variables �̂� = {�̂�𝐽𝐿[𝑘],0|𝑘 ∈ {0,1, … , 𝑁𝐽}} in this formulation.

The resulting formulation, shown by 𝑀(𝐶, �̂�), consists of the

variables C only, and the constraints of which are assigned the

dual variables; In the formulation (73)-(79), �̂� = {�̂�𝐽𝐿[𝑘],𝐽𝐿[𝑗]|𝑘 ∈

{0,1, … , 𝑁𝐽}, 𝑗 ∈ {1, … , 𝑁𝐽}|𝑘 ≠ 𝑗} comes from the MP solution,

and 𝐶 = {𝐶𝐽𝐿[𝑘],𝑖| 𝑘 = 1, . . . , 𝑁𝐽; 𝑖 = 1, . . . , 𝑀} are the vectors of

the decision variables. Note that there is no need for the decision

variables �̂� = {�̂�𝐽𝐿[𝑘],0|𝑘 ∈ {0,1, … , 𝑁𝐽}} in this formulation.

The resulting formulation, shown by 𝑀(𝐶, �̂�), consists of the

variables C only, and the constraints of which are assigned the

dual variables;

European Journal of Science and Technology

e-ISSN: 2148-2683 135

𝛼 = {𝛼𝐽𝐿[𝑗],𝑖 ≥ 0 | 𝑗 ∈ {1, … , 𝑁𝐽}; 𝑖 ∈ {1, … ,𝑀} } for constraints

set (74),

𝛽 = {𝛽𝐽𝐿[𝑗],𝐽𝐿[𝑘],𝑖 ≥ 0 | 𝑗 ∈ {1, … , 𝑁𝐽}; 𝑘 ∈ {0,1, … , 𝑁𝐽}|𝑘 ≠

𝑗; 𝑖 ∈ {1, … ,𝑀}} for constraints set (75),

 𝛾 = {𝛾𝐽𝐿[𝑗] ≥ 0 | 𝑗 ∈ {1, … , 𝑁𝐽} } for constraint set (76),

𝛿 = {𝛿𝐽𝐿[𝑗] = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 | 𝑗 = 1, . . . , 𝑁𝐽} for constraints (77),

𝜃 = {𝜃𝑖 = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 | 𝑖 = 1, . . . , 𝑀} for constraints (78),

respectively.

The dual 𝐷 = (𝛼, 𝛽, 𝛾, 𝛿, 𝜃, �̂�) of 𝑀(𝐶, �̂�) is given by the

following:

Maximize ∑ ∑𝛼𝑗,𝑖𝑃𝐽𝐿[𝑗],𝑖

𝑀

𝑖=1

𝑁𝐽

𝑗=1

+ ∑ ∑ ∑𝛽𝑗,𝑘,𝑖

𝑀

𝑖=1

𝑁𝐽

𝑗=1|𝑗≠𝑘

𝑁𝐽

𝑘=0

[𝑃𝐽𝐿[𝑗],𝑖

+ 𝑏𝑖𝑔𝑀(�̂�𝐽𝐿[𝑘],𝐽𝐿[𝑗] − 1)]

(80)

Subject to:

∑𝛾𝐽𝐿[𝑗] ≤

𝑁𝐽

𝑗=1

1 (81)

𝛼𝐽𝐿[𝑗],𝑖 − 𝛼𝐽𝐿[𝑗],𝑖+1 − ∑ 𝛽𝐽𝐿[𝑘],𝐽𝐿[𝑗],𝑖

𝑁𝐽

𝑘=1|𝑘≠𝑗

+ ∑ 𝛽𝐽𝐿[𝑗],𝐽𝐿[𝑘],𝑖

𝑁𝐽

𝑘=0|𝑘≠𝑗

≤ 0

𝑗 ∈ {1, … , 𝑁𝐽}; 𝑖 ∈ {1, … ,𝑀}

(82)

𝛼𝐽𝐿[𝑗],𝑀 − 𝛾𝐽𝐿[𝑗] − ∑ 𝛽𝐽𝐿[𝑘],𝐽𝐿[𝑗],𝑀

𝑁

𝑘=1|𝑘≠𝑗

+ ∑ 𝛽𝐽𝐿[𝑗],𝐽𝐿[𝑘],𝑀

𝑁

𝑘=0|𝑘≠𝑗

≤ 0 𝑗

∈ {1, … , 𝑁𝐽}

(83)

𝛿𝐽𝐿[𝑗] − 𝛼𝐽𝐿[𝑗],1 ≤ 0 𝑗 ∈ {1, … , 𝑁𝐽} (84)

𝜃𝑖 − ∑ 𝛽𝐽𝐿[𝑗],0,𝑖 ≤ 0

𝑁𝐽

𝑗=1

 𝑖 ∈ {1, … ,𝑀} (85)

The model (master model) always generates a feasible

solution. This, in turn, means that 𝐷 = (𝛼, 𝛽, 𝛾, 𝛿, 𝜃, �̂�) is always

feasible for a given �̂�, and for an optimal solution (𝛼, 𝛽, 𝛾, 𝛿, 𝜃)

of the dual problem, one obtains the following Benders optimality

cuts:

𝑧 ≥ 𝑡𝑜𝑡𝑎𝑙 + ∑ ∑ 𝐴𝑘,𝑗𝑋𝐽𝐿[𝑘],𝐽𝐿[𝑗]

𝑁

𝑗=1|𝑗≠𝑘

𝑁

𝑘=0

where z is a lower bound on the optimal solution value of

𝑀(𝐶, 𝑋),

𝑡𝑜𝑡𝑎𝑙 = ∑∑ �̂�𝐽𝐿[𝑗],𝑖

𝑀

𝑖=1

𝑁

𝑗=1

𝑃𝐽𝐿[𝑗],𝑖

+ ∑ ∑ ∑ �̂�𝐽𝐿[𝑗],𝐽𝐿[𝑘],𝑖𝑃𝐽𝐿[𝑗],𝑖

𝑀

𝑖=1

𝑁

𝑘=0|𝑘≠𝑗

𝑁

𝑗=1

− ∑ ∑ ∑ �̂�𝐽𝐿[𝑗],𝐽𝐿[𝑘],𝑖𝑏𝑖𝑔𝑀

𝑀

𝑖=1

𝑁

𝑘=0|𝑘≠𝑗

𝑁

𝑗=1

𝐴𝑘,𝑗 = ∑�̂�𝐽𝐿[𝑗],𝐽𝐿[𝑘],𝑖𝑏𝑖𝑔𝑀

𝑀

𝑖=1

 Using this result, we are now ready to present the following

reformulation of 𝑀(𝐶, 𝑋), referred to as the master problem

constructed by using the set PD of extreme points of 𝐷 = (𝐶, 𝑋)

and shown as MP(PD) below:

Minimize 𝑧

(86)

Subject to:

𝑧 ≥ 𝑡𝑜𝑡𝑎𝑙 + ∑ ∑ 𝐴𝑘,𝑗𝑋𝐽𝐿[𝑘],𝐽𝐿[𝑗]

𝑁

𝑗=1|𝑗≠𝑘

𝑁

𝑘=0

(87)

And, Constraint set (19) – (24)

Since the MP includes a large number of optimality cuts, it can

be solved by using a cutting plane algorithm in practice, normally

starting with MP(∅) with no optimality cuts (87) and generating

the cuts on an as-needed basis. The algorithm usually stops after

having solved a certain MP(P), where 𝑃 ⊂ 𝑃𝐷.

4. Hybrid Benders Decomposition

Algorithm

This section describes a hybrid algorithm that uses Benders

Decomposition with a simple yet effectual enhancement

mechanism entailing the generation of additional cuts by using

LS3 algorithm (Ruiz, Pan, and Naderi (2019)) to help accelerate

convergence. As also seen from the computational comparison

section, the best performance is shown by PB_Model1_V1 (A

single optimality cut inserting) among the pure Benders versions.

Therefore, a hybrid Benders decomposition algorithm is

developed based on PB_Model1_V1 in this section. In this hybrid

Benders decomposition algorithm, one extra cut is generated and

inserted into the MP (master problem) in each Benders iteration

by using the local search algorithm denominated LS3 developed

by Ruiz, Pan, and Naderi (2019). Different from the original LS3

algorithm, the LS3 algorithm used in this paper has taken its

preliminary solution from the master problem solution. The LS3

algorithm does not oblige any algorithm parameters.

The LS3 algorithm, if summarized in a few words, starts with

taking the MP solution. Then, the factory generating the Cmax is

selected. A job is arbitrarily extracted from this factory and

inserted into all possible positions in all factories (including the

one generating the makespan). If the best Cmax in all these

insertions is better than the starting Cmax , the job is relocated and

the search starts again from the beginning; otherwise, the job is

reinserted back into its original position and the search continues.

The procedure iterates until all jobs from the factory generating

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 136

the Cmax will have been tested (randomly and without repetition).

The pseudo code of LS3 is given in the following.

procedure LS3 (π= {π1, π2, ..., πF }) //It starts with taking the MP

solution

1: 𝐶max
∗ = max𝑓=1

𝐹 {𝐶max(π1), {𝐶max(π2),… , {𝐶max(π𝐹) }

2: 𝑓max = arg (𝐶max
∗) % (factory with the largest 𝐶max)

3: Cnt = 0

4: while (Cnt ≤ |π𝑓max
|) do % (all jobs in factory 𝑓max)

5: Randomly extract, without repetition, a job j from

position k of π𝑓max

6: for (f = 1to F)

7: Test job j in all possible positions of π𝑓 % (Taillard-

BSIG accelerations)

8: 𝐶max
𝑓

 is the lowest 𝐶max obtained

9: pf is the position where the lowest 𝐶max obtained

10: endfor

11: 𝑓min = arg (min𝑓=1
𝐹 (𝐶max

𝑓
))

12: if (𝐶max
𝑓

 < 𝐶max
∗)

13: Place job j at position pf of factory 𝑓min

14: 𝐶max
∗ =

 max𝑓=1
𝐹 {𝐶max(π1), {𝐶max(π2), … , {𝐶max(π𝐹) }

15: 𝑓max = arg (𝐶max
∗) // (factory with the largest 𝐶max)

16: Cnt = 0

17: elseif

18: Return job j to position k of 𝑓max

19: Cnt = Cnt + 1

20: endif

21: endwhile

The hybrid Benders decomposition is an iterative algorithm

generating optimality cuts (43) in each iteration based on an

optimal MP solution �̂� and uses �̂� as an input to the LS3 to

generate a neighbor solution �̂�𝐿S3, inducing an supplementary

optimality cut inserted into the master problem. In the hybrid

Benders algorithm, 2 cuts, one of which is generated from a

previous master model problem solution and the other from the

LS3 algorithm, are inserted to the master model in each Benders

iteration. The pseudo-code of the proposed algorithm is given in

the following.

Input: Problem data, allowable optimality gap 𝜀 ≥ 0

1. Set LB = -∞, UB = ∞

2: while (LB ≤ UB) do

3: Solve MP in order to obtain �̂� = {𝑋|𝑋 satisfies (2), (3),
and (9)}, and obtain solution value,

 obj_master

4. if (LB < obj_master)

5: LB = obj_master;

6: endif

7: Solve SP depending on Constraint sets (31) – (39) with

�̂�, obtain the solution value of SP, obj_sub

8: if (UB > obj_sub)

9: UB = obj_sub;

10: endif

11: Considering the MP solution (�̂�) as the initial solution of

LP3, run the LS3 algorithm to get a new solution (�̂�𝐿S3)

12: Solve the SP depending on Constraint sets (31) – (39) with

�̂�𝐿S3, obtain the solution value of SP,

 obj_sub_LS3

13: if (UB > obj_sub_LS3)

14: UB = obj_sub_LS3;

15: endif

16. Insert the optimality cuts into the MP for the solutions �̂�

and �̂�𝐿S3 //Inserting Constraint set (43) to MP for

 both solutions

17: endwhile

18: Report the best solution found by the last MP solution

5. Computational Results

The experiments are conducted in three main stages. First, the

mathematical models and automated Benders decomposition

versions of these models (available within the software) are

compared with each other. The pure Benders algorithms proposed

in the subsequent sub-section are compared with each other. Then

the developed hybrid Benders decomposition algorithm was

compared to the other methods. The algorithm and its variants are

coded in Visual C++, using CPLEX 12.7.1 as the solver. An Intel

Core i5-2450M computer with a 2.5 GHz CPU and 4 GB memory

was used. The tests are accomplished on 84 problem instances of

the distributed permutation flowshop scheduling problem

available at http://soa.iti.es. The data used in the experiments are

taken from the data file named DPFSP_Small. The problem

instances in the DPFSP_Small data file has been demonstrated

with 4 main indices. For instance, such as I_2_4_2_1 and

I_4_16_5_1. The numbers here indicate the dataset number {1, 2,

3, 4, 5} and how many factories {2, 3, 4}, how many jobs {4, 6,

8, 10, 12, 14, 16}, and how many machines {2, 3, 4, 5} are

available in the dataset, respectively. In the experiments, the

datasets whose last index is 1 in the data file named DPFSP_Small

are solved. Furthermore, all models are solved under a limitation

of 1800 seconds. In the execution of the variants of the Benders

algorithm, the presolver of the CPLEX is deactivated, whereas, in

the solution of the mathematical models, this decision is left to the

CPLEX solver. Deterministic mode with four threads is used in

the CPLEX solver in all exact algorithms runs.

5.1. Performance Comparisons of the

Mathematical Models

In this stage, the four models given in Section 2.1 are

evaluated with the automatic Benders decomposition algorithm

obtainable as ready-to-use within the CPLEX. The automatic

Benders decomposition algorithm of the CPLEX (shown by

ABD) is applied to 4 mathematical models given in Section 2.1.

Among these four models, only Model_1 is able to produce

solutions with the automatic Benders decomposition algorithm.

The other 3 models are unable to produce solution with the

automatic Benders algorithm. The summarized results are shown

in Table 3 and the results are shown in Figure 1 to facilitate the

reading of the data given in Table 3, as well. As seen from Table

3 and Figure 1, maximum number of instances are solved

optimally by Model_1 (56 instances), Model_3 (54 instances),

Model_2 (53 instances), Model_1_ABD (48 instances), and

Model_4 (46 instances), respectively. In terms of average time,

the Model_3 yielded the lowest time average with 56.40 (average

of the times of 54 optimal solutions). 46 instances are also solved

optimally by all methods. The instances solved jointly are solved

by Model_3 in the shortest average period (5.91 seconds on

average). Model_3 is followed by Model_2, Model_1,

Model_1_ABD, and Model 4 with 6.81, 24.91, 49.69, and 109.25

seconds in average, respectively. The worst performance is given

by Model_4 with 109.25 seconds on average. In terms of

suboptimal solutions gaps, Model_1 yielded the lowest gap value

with 9.13 on average. The best performance is given by Model_1

http://soa.iti.es/

European Journal of Science and Technology

e-ISSN: 2148-2683 137

with a gap average of 9.48 in 24 common instances that cannot be

solved optimally. Model_1 is followed by Model_1_ABD,

Model_3, Model_2, and Model_4 with the gap averages of 23.45,

25.83, 27.60, and 30.60, respectively. The maximum best integer

solution is yielded by Model_1 with 82 solutions. Model_1 is

followed by Model_3, Model_2, Model_1_ABD, and Model_4

with 71, 67, 61, and 58 solutions, respectively. If we consider all

performance values, Model_3 is given better performance

compared to Model_2 and it can be evidently said that the worst

performance is given by Model_4 among 4 models. It is not

possible to make a definitive distinction as to whether Model_1

or Model_3 is the best. Moreover, different comparisons can be

made within Model_3 by using different sub tour elimination

constraints available in the literature.

5.2. Performance Evaluation of the Pure Benders

Decomposition Algorithms

In this stage, 4 different pure Benders decomposition

algorithms generated from Model_1 and 2 different Benders

decomposition algorithms generated from Model_3 are

compared. Summary results are shown in Table 4 and the results

are also shown in Figure 2 to facilitate the reading of the data

given in Table 4. As seen from Table 4 and Figure 2, maximum

optimal solutions are found by PB_Model1_V1 with 54 solutions.

PB_Model1_V1 was followed by PB_Model1_V3,

PB_Model3_V1, PB_Model3_V2, PB_Model1_V2, and

PB_Model1_V4 with 51, 35, 35, 30, and 30 optimal solutions,

respectively. 29 common instances can be solved optimally by all

6 methods. The instances solved jointly are solved in the shortest

time by PB_Model3_V1 with an average time of 9.94; moreover,

30 widespread instances cannot be solved optimally by all 6

methods. The lowest average gap value is yielded by

PB_Model1_V1 with 39.06 in 30 instances that cannot be solved

jointly. PB_Model1_V1 yields the highest average lower bound

and lowest upper bound values among the 4 Model_1 based

Benders decomposition algorithm version for the 30 instances that

cannot be solved jointly. PB_Model3_V1 and PB_Model3_V2

models do not succeed in raising the lower bound that cannot be

solved optimally and the gap values in the instances that cannot

be solved by them optimally are 100%. On the other hand, the

shortest average solution time is reached by these two models

(PB_Model3_V1 and PB_Model3_V2) in the instances they are

able to solve optimally. As a general interpretation, it can be said

that PB_Model1_V1 is the most attractive Benders algorithm

since it can solve maximum number of examples optimally and

also yields the lowest average gap value in the instances that

cannot be solved optimally.

5.3. Performance of the proposed hybrid Benders

decomposition algorith

In this stage, the results of the proposed hybrid Benders

decomposition algorithm are given. As seen from Table 5 and 6,

the proposed hybrid Benders decomposition algorithm solves 75

instances optimally and in 273.68 seconds on average, except for

9 instances (data numbers 25, 52, 53, 54, 55, 56, 80, 83, and 84).
Average gap values of 9 instances that cannot be solved by it

optimally are calculated to be 22.72. If we include the results of

the other 11 models given in Tables 3 and 4 in the comparison, it

can be easily said that the proposed hybrid Benders

decomposition algorithm has given the most effective

performance among 12 models. We also developed and tested

various versions of the Pareto cuts for the proposed hybrid

Benders decomposition algorithm. Since the results were much

worse in terms of performance, we did not include them in the

paper. Besides, since the hybrid Benders decomposition algorithm

was deficient to optimally solve problem instances larger than 16

jobs, we also completed the experiments here and we also did not

add the results for the big problem instances to the paper.

Although it is not very convenient to compare any exact

solution method directly with any approximation algorithm,

ultimately, the results obtained by the hybrid Benders

decomposition algorithm are compared with the results of a

recently published state-of-the-art heuristic for solving this

problem, namely the iterated greedy algorithm of Ruiz et al.

(2019), in terms of the value of the solutions determined. It is seen

that the results obtained for 4 problem instances are better than

the best-known solutions given in Ruiz et al. (2019) available at

http://soa.iti.es. The mentioned problem instances are

I_2_16_5_1, I_3_16_3_1, I_3_16_5_1 and I_4_16_4_1. The

previous best-known solutions for problem instances mentioned

are 526, 340, 453 and 323, respectively, while the new best-found

solutions are 523, 339, 451, and 319, respectively. The

corresponding Gantt chart for these instances is presented in

Figure 3-6.

 Table 3. Summarized comparisons of the mathematical models and ABD.

General Statistics Model_1 Model_2 Model_3 Model_4 Model_1_ABD

Optimal Solution
Proven 56 53 54 46 48

Avg. Time 86.46 67.69 56.40 109.25 81.24

Common instances being

optimally solved by five

methods (46 instances)

Avg. Time 24.91 6.81 5.91 109.25

49.69

Suboptimal Solution
Feasible 28 31 30 38 36

Avg. Gap% 9.13 27.99 27.36 29.91 10.57

Common instances not

being optimally solved by

five methods (24

instances)

Avg. Gap% 9.48 27.60 25.83 30.60 23.45

Number of a best integer solution 82 67 71 58 61

http://soa.iti.es/

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 138

Figure 1. Summarized comparisons of the mathematical models and ABD.

5
6

8
6

,4
6

2
4

,9
1

2
8

9
,1

3

9
,4

8

8
2

5
3

6
7

,6
9

6
,8

1

3
1

2
7

,9
9

2
7

,6

6
7

5
4 5

6
,4

5
,9

1

3
0

2
7

,3
6

2
5

,8
3

7
1

4
6

1
0

9
,2

5

1
0

9
,2

5

3
8

2
9

,9
1

3
0

,6

5
8

4
8

8
1

,2
4

4
9

,6
9

3
6

1
0

,5
7

2
3

,4
5

6
1

Pro v en Av g . Time Av g . T ime Fea s ib le Av g . Ga p% Av g . Ga p% # B est in t eg er

so lut io ns

Opt ima l so lut io ns Co mmo n

ins ta nces be ing

o pt ima l ly so lv ed

by f ive methods

(4 6 ins ta nces)

Subo pt ima l So lut io n Co mmo n ins ta nces no t be ing

o pt ima l ly so lv ed by f iv e metho ds

(2 4 ins ta nces)

Model_1 Model_2 Model_3 Model_4 Model_1_ABD

European Journal of Science and Technology

e-ISSN: 2148-2683 139

Table 4. Summarized comparisons of the pure Benders decomposition models.

General Statistics PB_Model1_V1 PB_Model1_V2 PB_Model1_V3 PB_Model1_V4 PB_Model3_V1 PB_Model3_V2

Optimal

Solution

Proven 54 30 51 30 35 35

Avg.

Time
393.70 134.37 460.52 121.77 41.83 34.41

Avg.

Iteration
71.43 82.73 420.69 119.56 292.02 304.57

Common

instances

being

optimally

solved by six

methods (29

instances)

Avg.

Time
35.40 92.68 136.92 77.30 9.94 11.43

Avg.

Iteration
49.96 76.13 224.75 105.62 144.37 163.93

Suboptimal

Solution

Feasible 30 54 33 54 49 49

Avg.

Gap%
43.25 25.54 40.39 28.66 100 100

Avg.

Iteration
22.18 179.68 383.75 260.62 4676.91 5229.12

Avg.

Lower

Bound

258.63 292.96 247.67 278.24 0 0

Avg.

Upper

Bound

449.18 407.57 419.39 406.81 404 400.97

Common

instances not

being

optimally

solved by six

methods (30

instances)

Avg.

Gap%
39.06 43.25 41.32 45.35 100 100

Avg.

Iteration
22.18 90.59 365.36 104.59 4766.05 5501.90

Avg.

Lower

Bound

258.63 277.31 249.81 253.04 0 0

Avg.

Upper

Bound

449.18 465.95 430.90 474.86 438.09 435.72

Number of

Best Bounds

Highest

Lower

Bound

63 42 55 38 35 35

Lowest

Upper

Bound

56 31 58 34 40 41

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 140

Figure 2. Summarized comparisons of the pure Benders decomposition models.

5
4

3
9

3
,7

7
1

,4
3

3
5

,4 4
9

,9
6

3
0 4

3
,2

5

2
5

8
,6

3

4
4

9
,1

8

3
9

,0
6

2
5

8
,6

3

4
4

9
,1

8

6
3

5
6

3
0

1
3

4
,3

7

8
2

,7
3

9
2

,6
8

7
6

,1
3

5
4

2
5

,5
4

2
9

2
,9

6

4
0

7
,5

7

4
3

,2
5

2
7

7
,3

1

4
6

5
,9

5

4
2

3
1

5
1

4
6

0
,5

2

4
2

0
,6

9

1
3

6
,9

2

2
2

4
,7

5

3
3 4
0

,3
9

2
4

7
,6

7

4
1

9
,3

9

4
1

,3
2

2
4

9
,8

1

4
3

0
,9

5
5 5
8

3
0

1
2

1
,7

7

1
1

9
,5

6

7
7

,3

1
0

5
,6

2

5
4

2
8

,6
6

2
7

8
,2

4

4
0

6
,8

1

4
5

,3
5

2
5

3
,0

4

4
7

4
,8

6

3
8

3
43
5 4
1

,8
3

2
9

2
,0

2

9
,9

4

1
4

4
,3

7

4
9

1
0

0

0

4
0

4

1
0

0

0

4
3

8
,0

9

3
5 4
0

3
5

3
4

,4
1

3
0

4
,5

7

1
1

,4
3

1
6

3
,9

3

4
9

1
0

0

0

4
0

0
,9

7

1
0

0

0

4
3

5
,7

2

3
5 4
1

P r o v e n A v g . T i me A v g .

I t e r a t i o n

A v g . T i me A v g .

I t e r a t i o n

F e a s i b l e A v g .

G a p %

A v g .

L o w e r

B o u n d

A v g .

U p p e r

B o u n d

A v g .

G a p %

A v g .

L o w e r

B o u n d

A v g .

U p p e r

B o u n d

H i g h e s t

L o w e r

B o u n d

L o w e s t

U p p e r

B o u n d

O p t i ma l S o l u t i o n C o mmo n i n s t a n c e s

b e i n g o p t i ma l l y

s o l v e d b y s i x

me t h o d s (2 9

i n s t a n c e s)

S u b o p t i ma l S o l u t i o n C o mmo n i n s t a n c e s n o t b e i n g

o p t i ma l l y s o l v e d b y s i x

me t h o d s (3 0 i n s t a n c e s)

N u mb e r o f B e s t

B o u n d s

PB_Model1_V1 PB_Model1_V2 PB_Model1_V3 PB_Model1_V4 PB_Model3_V1 PB_Model3_V2

European Journal of Science and Technology

e-ISSN: 2148-2683 141

Table 5. Results of the proposed hybrid Benders decomposition algorithm.

Data No
Number of

Machines

Number

of Jobs

Number of

Factories

Lower

Bound

Upper

Bound
Gap%

Number of

Iterations

Cpu

Time

1 2 4 2 112 112 0.00 8 1.60

2 3 4 2 219 219 0.00 9 8.38

3 4 4 2 267 267 0.00 9 1.24

4 5 4 2 337 337 0.00 12 1.62

5 2 6 2 184 184 0.00 10 2.64

6 3 6 2 274 274 0.00 18 5.44

7 4 6 2 323 323 0.00 12 2.58

8 5 6 2 386 386 0.00 26 8.90

9 2 8 2 188 188 0.00 11 6.65

10 3 8 2 341 341 0.00 21 14.29

11 4 8 2 364 364 0.00 27 11.77

12 5 8 2 468 468 0.00 42 28.69

13 2 10 2 345 345 0.00 18 117.55

14 3 10 2 360 360 0.00 35 17.56

15 4 10 2 421 421 0.00 31 5.52

16 5 10 2 452 452 0.00 64 37.75

17 2 12 2 354 354 0.00 20 34.79

18 3 12 2 431 431 0.00 26 30.73

19 4 12 2 423 423 0.00 63 104.72

20 5 12 2 538 538 0.00 87 601.19

21 2 14 2 474 474 0.00 12 38.35

22 3 14 2 514 514 0.00 25 304.37

23 4 14 2 458 458 0.00 66 500.89

24 5 14 2 536 536 0.00 71 752.70

25 2 16 2 507 569 10.89 11 1800

26 3 16 2 489 489 0.00 56 1159.95

27 4 16 2 585 585 0.00 21 812.12

28 5 16 2 523 523 0.00 45 1798.15

29 2 4 3 139 139 0.00 11 0.42

30 3 4 3 197 197 0.00 12 0.36

31 4 4 3 263 263 0.00 11 0.46

32 5 4 3 390 390 0.00 9 0.78

33 2 6 3 161 161 0.00 12 0.51

34 3 6 3 222 222 0.00 14 0.91

35 4 6 3 249 249 0.00 19 1.04

36 5 6 3 351 351 0.00 15 0.93

37 2 8 3 210 210 0.00 18 2.04

38 3 8 3 271 271 0.00 25 3.26

39 4 8 3 343 343 0.00 33 6.08

40 5 8 3 344 344 0.00 28 3.19

41 2 10 3 208 208 0.00 29 23.46

42 3 10 3 270 270 0.00 35 16.08

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 142

Table 6. Results of the proposed hybrid Benders decomposition algorithm (continued).

Data No
Number of

Machines

Number

of Jobs

Number of

Factories

Lower

Bound

Upper

Bound
Gap%

Number of

Iterations

Cpu

Time

43 4 10 3 331 331 0.00 41 44.64

44 5 10 3 338 338 0.00 37 14.11

45 2 12 3 215 215 0.00 23 149.36

46 3 12 3 336 336 0.00 57 648.67

47 4 12 3 357 357 0.00 44 376.24

48 5 12 3 458 458 0.00 85 1568.31

49 2 14 3 225 225 0.00 16 753.86

50 3 14 3 324 324 0.00 25 1545.62

51 4 14 3 383 383 0.00 41 856.40

52 5 14 3 392 463 15.33 30 1800.02

53 2 16 3 260 392 33.67 11 1800.01

54 3 16 3 339 348 2.58 30 1800.02

55 4 16 3 338 481 29.73 23 1800.02

56 5 16 3 451 462 2.38 20 1800.03

57 2 4 4 164 164 0.00 14 0.87

58 3 4 4 229 229 0.00 12 0.73

59 4 4 4 251 251 0.00 6 0.21

60 5 4 4 248 248 0.00 15 0.56

61 2 6 4 164 164 0.00 15 1.48

62 3 6 4 227 227 0.00 14 0.67

63 4 6 4 262 262 0.00 29 3.23

64 5 6 4 309 309 0.00 18 1.44

65 2 8 4 187 187 0.00 22 4.10

66 3 8 4 213 213 0.00 39 7.50

67 4 8 4 326 326 0.00 31 5.05

68 5 8 4 359 359 0.00 22 4.43

69 2 10 4 155 155 0.00 29 10.34

70 3 10 4 219 219 0.00 33 9.70

71 4 10 4 346 346 0.00 47 15.71

72 5 10 4 327 327 0.00 85 96.19

73 2 12 4 183 183 0.00 23 51.47

74 3 12 4 237 237 0.00 69 801.38

75 4 12 4 290 290 0.00 77 364.45

76 5 12 4 411 411 0.00 110 103.43

77 2 14 4 235 235 0.00 24 962.26

78 3 14 4 303 303 0.00 28 1658.01

79 4 14 4 357 357 0.00 63 1355.33

80 5 14 4 390 399 2.26 57 1800.02

81 2 16 4 295 295 0.00 11 1558.69

82 3 16 4 294 294 0.00 23 1081.95

83 4 16 4 319 328 2.74 25 1800.02

84 5 16 4 304 457 33.48 24 1800.05

European Journal of Science and Technology

e-ISSN: 2148-2683 143

Figure 3. Gantt chart of the new best solution obtained by the Hybrid Benders Algorithm for instance I_2_16_5_1.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 144

Figure 4. Gantt chart of the new best solution obtained by the Hybrid Benders Algorithm for instance I_3_16_3_1.

European Journal of Science and Technology

e-ISSN: 2148-2683 145

Figure 5. Gantt chart of the new best solution obtained by the Hybrid Benders Algorithm for instance I_3_16_5_1.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 146

Figure 6. Gantt chart of the new best solution obtained by the Hybrid Benders Algorithm for instance I_4_16_4_1.

European Journal of Science and Technology

e-ISSN: 2148-2683 147

6. Conclusion

The distributed permutation flowshop scheduling problem

(DPFSP) has in recent times occurred as a generalization of the

regular flowshop scheduling problem where several factories are

available and accessible for dispensation of the jobs. The DPFSP

dealing with real-life applications has attracted the attention of

researchers for more or less a decade. The only exact method on

this problem that minimizes makespan is that of Naderi and Ruiz

(2010), which presents 6 different mathematical models for the

solution of the problem. The best performance was given by the

position-based distributed permutation flowshop scheduling

model and minimal sequence-based distributed permutation

flowshop scheduling model among these models. In addition to

these two best models, in this paper, 2 new models are developed

by inspiring the multiple-traveling salesman problem (mTSP)

formulations (Bektas (2006)). The new models mentioned are

developed by inspiring mTSP-assignment based integer

programming formulation and mTSP-flow-based formulation,

respectively. 4 different Benders decomposition algorithms are

developed based on the permutation flowshop scheduling model

and 2 different Benders decomposition by using the model

developed by inspiring mTSP-assignment based integer

programming formulation. In addition to these newly developed

8 different exact methods, a hybrid Benders decomposition

algorithm is developed by using the permutation flowshop

scheduling model and LS3 local search algorithm (Ruiz, Pan, and

Naderi (2019)). All of the existing and new exact methods are

compared with each other and the automatic Benders

decomposition algorithm characteristic available ready-to-use in

the CPLEX software by using 84 problem instances. The

proposed mTSP-assignment based integer programming

formulation based mathematical model has given superior

performance in terms of all performance criteria than the minimal

sequence-based distributed permutation flowshop scheduling

stated to be giving the best results by Naderi and Ruiz (2010). In

addition, the hybrid Benders decomposition algorithm developed

by hybridizing the permutation flowshop scheduling model and

LS3 local search algorithm has outperformed compared to the

other 11 models by solving 75 out of 84 problem instances

optimally under a time limitation of 1800 seconds. In this paper,

4 new best solutions are also indentified for the DPFSP. The

results obtained in this paper encourage the use of such a strategy

in solving other variants of the DPFSP, such as non-idle and no-

wait DPFSP with or without setup times.

References

Bektas, T. (2006). The multiple traveling salesman problem: an

overview of formulations and solution procedures, Omega

https://doi.org/10.1016/j.omega.2004.10.004.

Benders, J.F. (1962). Partitioning procedures for solving mixed-

variables programming problems, Numerische Math. 4, 238–

252.

Chan, F.T.S., Chung, S.H., Chan, L.Y., Finke, G., & Tiwari,

M.K. (2006). Solving distributed FMS scheduling problems

subject to maintenance: genetic algorithms approach,

Robotics and Comput. Integrated Manufac.

https://doi.org/10.1016/j.rcim.2005.11.005.

Costa, A.M., Cordeau, J. F., Gendron, B., & Laporte, G. (2012).

Accelerating Benders decomposition with heuristic master

problem solutions, Pesquisa Operacional

http://dx.doi.org/10.1590/S0101-74382012005000005.

Deng, J., & Wang, L. (2017). A competitive memetic algorithm

for multi-objective distributed permutation flow shop

scheduling problem, Swarm and Evolutionary Comput.

https://doi.org/10.1016/j.swevo.2016.06.002.

Fernandez-Viagas, V., & Framinan, J.M. (2015). A bounded-

search iterated greedy algorithm for the distributed

permutation flowshop scheduling problem, Int. J. of Prod.

Res. https://doi.org/10.1080/00207543.2014.948578.

Framinan, J.M., Gupta, J.N.D., & Leisten, R. (2004). A review

and classification of heuristics for permutation flow-shop

scheduling with makespan objective, J. Oper. Res. Soc.

https://doi.org/10.1057/palgrave.jors.2601784.

Framinan, J.M., Leisten, R., & Ruiz, R. (2014). Manufacturing

Scheduling Systems: An Integrated View on Models,

Methods and Tools. Springer, New York.

Fernandez-Viagas, V., Ruiz, E., & Framinan, J.M. (2017). A new

vision of approximate methods for the permutation flowshop

to minimise makespan: state-of-the-art and computational

evaluation, Eur. J. Oper. Res.

https://doi.org/10.1016/j.ejor.2016.09.055.

Gao, J., & Chen, R. (2011a). A hybrid genetic algorithm for the

distributed permutation flowshop scheduling problem, Int. J.

Comput. Intel. Syst. 4, 497–508.

Gao, J., & Chen, R. (2011b). An NEH-based Heuristic Algorithm

for Distributed Permutation Flowshop Scheduling Problems,

Sci. Res. and Essays 6, 3094–3100.

Gao, J., Chen, R., Deng, & W., Liu, Y. (2012). Solving multi-

factory flowshop problems with a novel variable

neighbourhood descent algorithm. J. Comput. Inf. Syst. 8,

2025–2032.

Gao, J., Chen, R., & Deng, W. (2013). An efficient tabu search

algorithm for the distributed permutation flowshop

scheduling problem, Int. J. Prod. Res.

https://doi.org/10.1080/00207543.2011.644819.

Garey, M.R., Johnson, D.S., & Sethi, R. (1976). The complexity

of flowshop and jobshop scheduling, Math. Oper. Res.

https://doi.org/10.1287/moor.1.2.117.

Giovanni, L.D., & Pezzella, F. (2010). An improved genetic

algorithm for the distributed and flexible job-shop scheduling

problem, Eur. J. Oper. Res.

https://doi.org/10.1016/j.ejor.2009.01.008.

Gupta, J.N.D., & Stafford Jr, E. F. (2006). Flowshop scheduling

research after five decades, Eur. J. Oper. Res.

https://doi.org/10.1016/j.ejor.2005.02.001.

Hejazi, S.R., & Saghafian, S. (2005). Flowshop-scheduling

problems with makespan criterion: a review, Int. J. Prod. Res.

https://doi.org/10.1080/0020754050056417.

Jia, H.Z., Fuh, J.Y.H., Nee, A.Y.C., & Zhang, Y.F. (2007).

Integration of genetic algorithm and Gantt chart for job shop

scheduling in distributed manufacturing systems, Comput.

Indust. Eng. https://doi.org/10.1016/j.cie.2007.06.024.

Johnson, S.M. (1954). Optimal two- and three-stage production

schedules with setup times included, Naval Res. Logistics

Quarterly, https://doi.org/10.1002/nav.3800010110.

Liu, H., & Gao, L. (2010). A Discrete Electromagnetism-like

Mechanism Algorithm for Solving Distributed Permutation

Flowshop Scheduling Problem. International Conference on

Manufacturing Automation

https://ieeexplore.ieee.org/document/5695172.

Lin, S.W., Ying, K.C., & Huang, C.Y. (2013). Minimising

makespan in distributed permutation flowshops using a

modified iterated greedy algorithm, Int. J. Prod. Res.

https://doi.org/10.1080/00207543.2013.790571.

https://doi.org/10.1016/j.omega.2004.10.004
https://doi.org/10.1016/j.rcim.2005.11.005
https://doi.org/10.1016/j.swevo.2016.06.002
https://doi.org/10.1080/00207543.2014.948578
https://doi.org/10.1057/palgrave.jors.2601784
https://doi.org/10.1016/j.ejor.2016.09.055
https://doi.org/10.1080/00207543.2011.644819
https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.1016/j.ejor.2009.01.008
https://doi.org/10.1016/j.ejor.2005.02.001
https://doi.org/10.1080/0020754050056417
https://doi.org/10.1016/j.cie.2007.06.024
https://doi.org/10.1002/nav.3800010110
https://ieeexplore.ieee.org/xpl/conhome/5691023/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5691023/proceeding
https://doi.org/10.1080/00207543.2013.790571

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 148

McKay, K.N., Pinedo, M., & Webster, S. (2002). Practice-focused

research issues for scheduling systems, Prod. Oper. Manage.

https://doi.org/10.1111/j.1937-5956.2002.tb00494.x.

Naderi, B., & Ruiz, R. (2010). The distributed permutation

flowshop scheduling problem, Comput. Oper. Res.

https://doi.org/10.1016/j.cor.2009.06.019.

Naderi, B., & Ruiz, R. (2014). A scatter search algorithm for the

distributed permutation flowshop scheduling problem, Eur. J.

Oper. Res. https://doi.org/10.1016/j.ejor.2014.05.024.

Nawaz, M., Enscore, E.E., & Ham, J.I. (1983). A heuristic

algorithm for the m -machine, n -job flow-shop sequencing

problem, Omega https://doi.org/10.1016/0305-

0483(83)90088-9.

Onwubolu, G., & Davendra, D. (2006). Scheduling flow shops

using differential evolution algorithm, Eur. J. Oper. Res.

https://doi.org/10.1016/j.ejor.2004.08.043

Pinedo, M. (2016). Scheduling: Theory, Algorithms and Systems.

Springer, New York.

Rahmaniani, R., Crainic, T.G., Gendreau, M., & Rei, W. (2017).

The Benders decomposition algorithm: A literature review,

Eur. J. Oper. Res. https://doi.org/10.1016/j.ejor.2016.12.005.

Reisman, A., Kumar, A., & Motwani, J. (1997). Flowshop

scheduling/sequencing research: a statistical review of the

literature 1952-1994. IEEE Trans. Eng. Manage. 44, 316-329.

Ruiz, R., & Maroto, C. (2005). A comprehensive review and

evaluation of permutation flowshop heuristics, Eur. J. Oper.

Res. https://doi.org/10.1016/j.ejor.2004.04.017.

Ruiz, R., Pan, Q.K., & Naderi, B. (2019). Iterated Greedy

methods for the distributed permutation flowshop scheduling

problem, Omega

https://doi.org/10.1016/j.omega.2018.03.004.

Sherali, H.D., & Fraticelli, B.M.P. (1962). A modification of

Benders’ decomposition algorithm for discrete subproblems:

An approach for stochastic programs with integer recourse, J.

Global Optimization. 22, 319-342.

Wang, S.Y., Wang, L., Liu, M., & Xu, Y. (2013). An effective

estimation of distribution algorithm for solving the

distributed permutation flow-shop scheduling problem, Int. J.

Prod. Eco. https://doi.org/10.1016/j.ijpe.2013.05.004.

Xu, Y., Wang, L., Wang, S., & Liu, M. (2014). An effective hybrid

immune algorithm for solving the distributed permutation

flow-shop scheduling problem, Eng. Optimization

https://doi.org/10.1080/0305215X.2013.827673.

Ying, K.C., Lin, S.W., Cheng, C.Y., & He, C.D. (2017). Iterated

reference greedy algorithm for solving distributed no-idle

permutation flowshop scheduling problems, Comput. Indust.

Eng. https://doi.org/10.1016/j.cie.2017.06.025.

https://doi.org/10.1111/j.1937-5956.2002.tb00494.x
https://doi.org/10.1016/j.cor.2009.06.019
https://doi.org/10.1016/j.ejor.2014.05.024
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1016/j.ejor.2004.08.043
https://doi.org/10.1016/j.ejor.2016.12.005
https://doi.org/10.1016/j.ejor.2004.04.017
https://doi.org/10.1016/j.omega.2018.03.004
https://doi.org/10.1016/j.ijpe.2013.05.004
https://doi.org/10.1080/0305215X.2013.827673
https://doi.org/10.1016/j.cie.2017.06.025

