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Abstract 

Artificial intelligence (AI) and machine learning (ML) lead a new era in remote health monitoring and preventive care, while making 

ZnO based strain sensor and nanogenerators a very attractive data collection tool. Here, we demonstrate flexible piezotronics strain 

sensor/nanogenerator, based on chemically modified graphene aerogels to monitor human hand/finger motions as well as gait 

asymmetries.  The I-V characteristic of the sensor shows high sensitivity towards detection of human motion with a good gauge factor 

of as high as 95 has been demonstrated. 

Keywords: Nanogenerator, Wearable electronics, Strain sensor, Piezotronics, Piezoelectric, Sensors, ZnO nanoparticles, Aerogels, 

Graphene, Health monitoring.   

Sağlık İzleme için Grafen Aerojel Bazlı Nanojeneratörler 

Öz 

Yapay zeka (AI) ve makine öğrenimi (ML), uzaktan sağlık izleme ve önleyici bakımda yeni bir döneme öncülük ederken, ZnO tabanlı 

gerinim sensörünü ve nanojeneratörleri çok çekici bir veri toplama aracı haline getiriyor. Burada, insan eli / parmak hareketlerini ve 

yürüyüş asimetrilerini izlemek için kimyasal olarak modifiye edilmiş grafen aerojellere dayanan esnek piezotronik gerinim sensörü / 

nanojeneratör gösteriyoruz. Sensörün I-V özelliği, insan hareketinin algılanmasına karşı yüksek hassasiyet ,95 kadar, gösterge faktörü 

bulunmuştur. 

 

Anahtar Kelimeler: Nanojeneratör, Giyilebilir elektronik, Gerinim sensörü, Piezotronik, Piezoelektrik, Sensörler, ZnO 

nanopartikülleri, Aerojeller, Grafen, Sağlık izleme.  
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1. Introduction 

With the rise of Artificial Intelligence (AI) and Machine 

Learning (ML) techniques, flexible piezotronics strain sensors 

and nanogenerators are a very attractive tool for data collection, 

especially with remote health monitoring and preventive care. 

Their high sensitivity and fast response times makes them an ideal 

candidate for effective data collection for these important 

applications, especially, since their nanostructured architectures 

have become very intriguing to researchers due to the potential 

benefit of flexibility, energy harvesting capability, and easy 

deployment [1-4]. Various nano-architectures have been designed 

and fabricated from many different piezoelectric materials [1-5].  

Among these piezoelectric materials, a large number of 

applications use ZnO nanomaterials, due to its unique advantages, 

such as biocompatibility, low cost, easy synthesis, and optical 

properties [5-10].  Especially ZnO, which received great attention 

after Wang’s group ZnO nanowire based nanogenerator formation 

[5], that demonstrated excellent strain induced response 

properties. Thus, ZnO nanowires (ZnO-NWs) have become a 

center of attention in building high sensitive strain sensors. 

However, ZnO-NWs requires compatible host materials that are 

electronically coupled with ZnO and allow flexible adaptive 

movements [6-7]. Because, without the proper host material, 

ZnO-NWs can be very brittle and not suitable for flexible 

applications, especially under stress, ZnO layer is more prone to 

cracking and failure [6-11]. Thus, ZnO-NWs is constantly 

embedded in various different materials to build flexible strain 

sensors, including different carbon fiber, carbon paper, polymer 

composite materials, etc [6-10]. 

In this paper, we present the fabrication and application of a 

flexible piezotronics strain sensor/nanogenerator, architecture 

based on chemically modified graphene aerogel (GA). The strain 

sensor fabricated with chemically induced ZnO nanoparticles on 

graphene aerogel substrate, and strain sensing, both static and 

dynamic loading, are demonstrated. The I-V behavior of the 

device showed high sensitivity with a gauge factor (GF) of as high 

as 95. 

 

Figure 1 a) The schematic diagram ZnO-Nps/GA strain sensor. 

(b) The SEM image of the ZnO-Nps/GA. 

2. Results and Discussion  

The schematic of the strain sensor device and SEM image is 

shown in Fig. 1. Graphene aerogels are synthesized by the 

gelation of a graphene oxide (GO) suspension. GO was suspended 

(2 wt%) in deionized (DI) water and sonicated at ~ 40kHz. Then, 

in a glass vial, 5ml of the GO suspension was mixed with 500 µL 

of concentrated NH4OH (30%). This solution was then 

transferred to a glass slide attached to rubber rectangular molds 

and cured in an oven at 80°C for 72h. The resulting gels were 

removed from the molds and subject to chemical exchange with 

acetone and DI water, followed up by super critical CO2 drying 

and pyrolyzed, carbonized, at ~1000°C under a N2 atmosphere 

for 3h [12-14]. Resulted GA materials were then mixed with a 

ZnO nanoparticle (ZnO-Nps) solution (<100 nm) which is a very 

important step to produce high quality ZnO-Nps/GA interfaces 

[12]. Finally, the whole device architecture was developed with 

contacts, Au and Ag, top and bottom contact, respectively, for GA, 

and encapsulated with polydimethylsiloxane (PDMS) elastomer, 

which is very important to stabilized GA interconnected flakes.  

Figure 2 I-V characteristic of the strain sensor at different strain. 

The characterization of the I-V behavior of the strain sensor 

was investigated under static loading, shown in Fig. 2. At different 

strains, Schottky barrier height (SBH) and current values in 

rectifying curves alters, shift upward and downward with 

compressive and tensile strain, respectively.  The stability of the 

device was tested with many repeated full cycles of compressing 

and stretching, at a frequency of 2 Hz under a fixed bias of 1V 

(Fig. 3). It can be clearly seen that the current reaches 

approximately the same values in each cycle, which indicate a 

stable behavior and desirable electron transport behavior, due to 

good Schottky junction formations [6,7,16-17]. To determine the 

performance of the strain sensor, gauge factor is calculated 95 by  

Figure 1 Current response of the strain sensor (a) compressed, 

(b) stretched at a frequency of 2 Hz under fixed bias 1 V.  
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the equation GF = (ΔR/R)/Δε, where R is the initial resistance, ΔR 

is the changed resistance, and Δε is the strain change (Fig. 5c). 

The best of our knowledge, this calculated value is much higher 

than values reported for ZnO/carbon based strain sensors [6,7]. 

We also tested the transient decay of electrons at a fixed strain 

(Fig. 4), strain sensors stretched for 100s and then released for 10s 

repeatedly. It can be clearly seen that strain sensor quickly recover 

to initial conditions once the stretch registered. The decay during 

the hold is due to ZnO-Nps charge trapping behavior which is 

widely reported in the literature. This experiments also clearly 

shows that graphene aerogel is a good host material to 

accommodate ZnO-Nps, which commonly have cracking and 

adhesion problem during dynamic loading [18,19]. GA enables 

continuous active contact to ZnO at any loading condition due to 

its flexibility and high porous structure. 

 The health monitoring features of these sensors were also 

studied. To study the respiratory rate and pattern, the sensor was 

placed on the chest of the subject. It can be clearly seen from Fig. 

5b that the sensor accurately responded to each deep inhaling 

event, every 10s. To study the movements of gait, the sensor was 

placed on the left foot of the subject and it recorded each step (Fig. 

5b). Moreover, a wrist pulse of 73 beats per minute (bpm) was 

successfully measured (Fig. 5c).  

 

 

Figure 3 Physiological change detection (a) of breathing events. 

(b) gait movement c) pulse measureme

 

3. Conclusions and Recommendations 

In summary, we demonstrated a technique to produce a cost 

effective flexible piezotronics strain sensor based on nanoparticle 

enhanced graphene aerogel substrates. Graphene aerogels provide 

an excellent receiving substrate to ZnO nanoparticles, that 

piezoelectric effect can be maintained under any strain condition. 

I-V characteristic of the device demonstrates consistent SBH 

modulation and high sensitivity under static and dynamic loading. 

Moreover, it exhibits a very good gauge factor, flexibility, and 

stability so that important physiological changes can be detected, 

such as respiratory rate, movements of gait, and pulse detection. 

This device can be used with various healthcare applications such 

as remote health monitoring, preventive medicine, and diagnosis.  

This device can be used with various healthcare applications 

such as remote health monitoring, preventive medicine, and 

diagnosis.  
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